ケース環境内でのページ区切り

ケース環境内でのページ区切り

cases環境内で環境を複数回使用してalign、かなり長い方程式を入力しています。これにより、多くの空白が作成されますが、これを取り除きたいです。

環境内で改ページする方法、または適切な代替案に関する提案がcasesあれば、大変助かります。具体的には、プリアンブルに \allowdisplaybreaks を入力しても、cases 環境は壊れないことがわかっています (次の MWE で確認できます)。

\documentclass[11pt,a4paper]{amsart}
\allowdisplaybreaks
\usepackage{enumerate,amssymb,amsmath}
\begin{document}

\begin{align*}
&\text{something}\\
&=
\begin{cases}
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if A;}\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if B.}\\
\end{cases}
\\
&=
\begin{cases}
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if A;}\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if B.}\\
\end{cases}
\\
&=
\begin{cases}
\displaystyle{+ 
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if A;}\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if B.}\\
\end{cases}
\end{align*}

\end{document}

答え1

このような状況では、根拠のある解決策を探すよりも、表記法を再考する傾向がありますTeX。ページをまたぐケースのような環境を作成する方法を見つけたとしても、結果は見栄えが悪く、読みやすさも悪くなります。実際の方程式を見ずに具体的な提案をするのは難しいですが、あなたが示した用語が繰り返し出現する場合は、定義する傾向があります。

r_{nk} = \frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)},

こうすることで多くのスペースを節約できるからです。

答え2

私はこの質問の「適切な代替案」の部分に回答しています。私も同じ質問をしたことがあり、これまでに見つけた最良の回答は次の質問に対する回答です。Tikz - ロングテーブルに装飾を重ねる方法

確かにこれは理想からは程遠いですが、可能な代替案です。

関連情報