私の「Geometrie und Topologie」という本の一部には、学生が記号を理解できないときに適切な単語をすばやく見つけることができる記号表があります。これにより、インデックス / Wikipedia / Google / math.SE 経由の検索がはるかに簡単になります。ただし、現時点では見た目はあまり良くありません。
この文書の完全な出典はここ。
動作例
次の例は、ほぼ (参照とページ番号を除いて) 現在持っているシンボル テーブルにコンパイルされます。
\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}
\usepackage{amsmath,amssymb}% math symbols / fonts
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage[bookmarks,bookmarksnumbered,hypertexnames=false,pdfpagelayout=OneColumn,colorlinks,hyperindex=false]{hyperref} % has to be after makeidx
\hypersetup{hidelinks=true}
\usepackage{braket} % needed for \Set
\usepackage{parskip} % nicer paragraphs
\usepackage[german,nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm
\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]%
{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]%
{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{%
\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}
\allowdisplaybreaks
\usepackage{microtype}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\fB{\mathfrak{B}}
\def\calS{\mathcal{S}}
\def\fT{\mathfrak{T}}
\def\fU{\mathfrak{U}}
\def\atlas{\ensuremath{\mathcal{A}}}
\def\praum{\ensuremath{\mathcal{P}}}
\DeclareMathOperator{\rang}{Rg}
\newcommand\dcup{\mathbin{\dot{\cup}}}
\def\GL{\ensuremath{\mathrm{GL}}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\def\SL{\ensuremath{\mathrm{SL}}}
\def\PSL{\ensuremath{\mathrm{PSL}}}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}
\def\mda{\ensuremath{\mathbb{A}}}
\def\mdp{\ensuremath{\mathbb{P}}}
\def\mdc{\ensuremath{\mathbb{C}}}
\def\mdk{\ensuremath{\mathbb{K}}}
\def\mdr{\ensuremath{\mathbb{R}}}
\def\mdq{\ensuremath{\mathbb{Q}}}
\def\mdz{\ensuremath{\mathbb{Z}}}
\def\mdn{\ensuremath{\mathbb{N}}}
\def\mdh{\ensuremath{\mathbb{H}}}
\begin{document}
\appendix
\markboth{Symbolverzeichnis}{Symbolverzeichnis}
\twocolumn
\chapter*{Symbolverzeichnis}
\addcontentsline{toc}{chapter}{Symbolverzeichnis}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mengenoperationen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Mengenoperationen}
$A^C\;\;\;$ Komplement der Menge $A$\\
$\mathcal{P}(M)\;\;\;$ Potenzmenge von $M$\\
$\overline{M}\;\;\;$ Abschluss der Menge $M$\\
$\partial M\;\;\;$ Rand der Menge $M$\\
$M^\circ\;\;\;$ Inneres der Menge $M$\\
$A \times B\;\;\;$ Kreuzprodukt zweier Mengen\\
$A \subseteq B\;\;\;$ Teilmengenbeziehung\\
$A \subsetneq B\;\;\;$ echte Teilmengenbeziehung\\
$A \setminus B\;\;\;$ $A$ ohne $B$\\
$A \cup B\;\;\;$ Vereinigung\\
$A \dcup B\;\;\;$ Disjunkte Vereinigung\\
$A \cap B\;\;\;$ Schnitt\\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Geometrie %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Geometrie}
$AB\;\;\;$ Gerade durch die Punkte $A$ und $B$\\
$\overline{AB}\;\;\;$ Strecke mit Endpunkten $A$ und $B$\\
$\triangle ABC\;\;\;$ Dreieck mit Eckpunkten $A, B, C$\\
$\overline{AB} \cong \overline{CD}\;\;\;$ Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
$|K|\;\;\;$ Geometrische Realisierung des Simplizialkomplexes $K$\\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gruppen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Gruppen}
$\Homoo(X)\;\;\;$ Homöomorphismengruppe\\
$\Iso(X)\;\;\;$ Isometriengruppe\\
$\GL_n(K)\;\;\;$ Allgemeine lineare Gruppe\footnote{von \textit{\textbf{G}eneral \textbf{L}inear Group}}\\
$\SL_n(K)\;\;\;$ Spezielle lineare Gruppe\\
$\PSL_n(K)\;\;\;$ Projektive lineare Gruppe\\
$\Perm(X)\;\;\;$ Permutationsgruppe\\
$\Sym(X)\;\;\;$ Symmetrische Gruppe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wege %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Wege}
$\gamma: I \rightarrow X\;\;\;$ Ein Weg\\
$[\gamma]\;\;\;$ Homotopieklasse von $\gamma$\\
$\gamma_1 * \gamma_2\;\;\;$ Zusammenhängen von Wegen\\
$\gamma_1 \sim \gamma_2\;\;\;$ Homotopie von Wegen\\
$\overline{\gamma}(x) = \gamma(1-x)\;\;\;$ Inverser Weg\\
$C := \gamma([0,1])\;\;\;$ Bild eines Weges $\gamma$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Weiteres %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Weiteres}
$\fB\;\;\;$ Basis einer Topologie\\
$\calS\;\;\;$ Subbasis einer Topologie\\
$\fB_\delta(x)\;\;\;$ $\delta$-Kugel um $x$\\
$\fT\;\;\;$ Topologie\\
$\atlas\;\;\;$ Atlas\\
$\praum\;\;\;$ Projektiver Raum\\
$\langle \cdot , \cdot \rangle\;\;\;$ Skalarprodukt\\
$X /_\sim\;\;\;$ $X$ modulo $\sim$\\
$[x]_\sim\;\;\;$ Äquivalenzklassen von $x$ bzgl. $\sim$\\
$\| x \|\;\;\;$ Norm von $x$\\
$| x |\;\;\;$ Betrag von $x$\\
$\langle a \rangle\;\;\;$ Erzeugnis von $a$\\
$S^n\;\;\;$ Sphäre\\
$T^n\;\;\;$ Torus\\
$f \circ g\;\;\;$ Verkettung von $f$ und $g$\\
$\pi_X\;\;\;$ Projektion auf $X$\\
$f|_U\;\;\;$ $f$ eingeschränkt auf $U$\\
$f^{-1}(M)\;\;\;$ Urbild von $M$\\
$\rang(M)\;\;\;$ Rang von $M$\\
$\chi(K)\;\;\;$ Euler-Charakteristik von $K$\\
$\Delta^k\;\;\;$ Standard-Simplex\\
$X \# Y\;\;\;$ Verklebung von $X$ und $Y$\\
$d_n\;\;\;$ Lineare Abbildung aus \cref{kor:9.11}\\
$A \cong B\;\;\;$ $A$ ist isometrisch zu $B$\\
$f_*\;\;\;$ Abbildung zwischen Fundamentalgruppen (vgl. \cpageref{korr:11.5})
\onecolumn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Zahlenmengen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Zahlenmengen}
$\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
$\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
$\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
$\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
$\mdr_+\;$ Echt positive reele Zahlen\\
$\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
$\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
$\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
$\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
$\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
$I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
$f:S^1 \hookrightarrow \mdr^2\;\;\;$ Einbettung der Kreislinie in die Ebene\\
$\pi_1(X,x)\;\;\;$ Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
$\Fix(f)\;\;\;$ Menge der Fixpunkte der Abbildung $f$\\
$\|\cdot\|_2\;\;\;$ 2-Norm; Euklidische Norm\\
$\kappa\;\;\;$ Krümmung\\
$\kappa_{\ts{Nor}}\;\;\;$ Normalenkrümmung\\
$V(f)\;\;\;$ Nullstellenmenge von $f$\footnote{von \textit{\textbf{V}anishing Set}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Krümmung %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Krümmung}
$D_p F: \mdr^2 \rightarrow \mdr^3\;\;\;$ Lineare Abbildung mit Jacobi-Matrix in $p$ (siehe \cpageref{def:Tangentialebene})\\
$T_s S\;\;\;$ Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
$d_s n(x)\;\;\;$ Weingarten-Abbildung\\
\end{document}
レンダリング
質問
このシンボル テーブルを「より良く」する方法を知りたいです。
これを改善する方法として思いつくのは、最初のページのコンテンツを「Gruppen」セクションの下に揃えることです。ただし、回答をこれに限定したくはありません。
私が試したこと
表形式の
私はtabular
環境を使用しようとしました:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mengenoperationen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Mengenoperationen}
\begin{tabular}{ll}
$A^C$ & Komplement der Menge $A$\\
$\mathcal{P}(M)$& Potenzmenge von $M$\\
$\overline{M}$ & Abschluss der Menge $M$\\
$\partial M$ & Rand der Menge $M$\\
$M^\circ$ & Inneres der Menge $M$\\
$A \times B$ & Kreuzprodukt zweier Mengen\\
$A \subseteq B$ & Teilmengenbeziehung\\
$A \subsetneq B$& echte Teilmengenbeziehung\\
$A \setminus B$ & $A$ ohne $B$\\
$A \cup B$ & Vereinigung\\
$A \dcup B$ & Disjunkte Vereinigung\\
$A \cap B$ & Schnitt
\end{tabular}
しかし、次のようになります:
項目別
\section*{Mengenoperationen}\leavevmode
\begin{itemize}
\itemsep0em
\item[$A^C$] Komplement der Menge $A$\\
\item[$\mathcal{P}(M)$] Potenzmenge von $M$\\
\item[$\overline{M}$] Abschluss der Menge $M$\\
\item[$\partial M$] Rand der Menge $M$\\
\item[$M^\circ$] Inneres der Menge $M$\\
\item[$A \times B$] Kreuzprodukt zweier Mengen\\
\item[$A \subseteq B$] Teilmengenbeziehung\\
\item[$A \subsetneq B$] echte Teilmengenbeziehung\\
\item[$A \setminus B$] $A$ ohne $B$\\
\item[$A \cup B$] Vereinigung\\
\item[$A \dcup B$] Disjunkte Vereinigung\\
\item[$A \cap B$] Schnitt
\end{itemize}
結果として間隔が広くなりすぎます。
答え1
xtab
パッケージとその環境 を使用できますxtabular
。これは、列やページをまたいで分割できるという点で、環境と非常によく似ています。ただし、は ではなくlongtable
、twocolumn モードとも互換性があります。longtable
最初の表の列 (記号列) の幅を、各セクション内の最も幅の広い記号エントリがちょうど収まる幅に調整することをお勧めします。次に、表全体の幅が になるように 2 番目の列を調整します。\columnwidth
表内の 2 番目の列の幅が狭いため、「完全」な位置揃えはお勧めできません。代わりに、ハイフネーションを許可する\RaggedRight
(パッケージ で提供ragged2e
) を使用してください。(対照的に、 では\raggedright
ハイフネーションは許可されません。)
この例では、大きな例の最初のページのみが表示されます。
\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}
\usepackage{array,xtab,ragged2e}
\newlength\mylengtha
\newlength\mylengthb
\newcolumntype{P}[1]{>{\RaggedRight}p{#1}}
\tabcolsep=3pt % default: 6pt
\usepackage{amsmath,amssymb}% math symbols / fonts
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct
% output of umlauts in pdf
\usepackage{braket} % needed for \Set
\usepackage{parskip} % nicer paragraphs
\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]%
{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]%
{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{%
\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}
\allowdisplaybreaks
\usepackage{microtype}
\usepackage{hyperref} % has to be after makeidx
\hypersetup{bookmarks,bookmarksnumbered,hypertexnames=false,
pdfpagelayout=OneColumn,colorlinks,hyperindex=false,
hidelinks=true}
\usepackage[german,nameinlink,noabbrev]{cleveref}
% has to be after hyperref, ntheorem, amsthm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\fB{\mathfrak{B}}
\def\calS{\mathcal{S}}
\def\fT{\mathfrak{T}}
\def\fU{\mathfrak{U}}
\def\atlas{\ensuremath{\mathcal{A}}}
\def\praum{\ensuremath{\mathcal{P}}}
\DeclareMathOperator{\rang}{Rg}
\newcommand\dcup{\mathbin{\dot{\cup}}}
\def\GL{\ensuremath{\mathrm{GL}}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\def\SL{\ensuremath{\mathrm{SL}}}
\def\PSL{\ensuremath{\mathrm{PSL}}}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}
\def\mda{\ensuremath{\mathbb{A}}}
\def\mdp{\ensuremath{\mathbb{P}}}
\def\mdc{\ensuremath{\mathbb{C}}}
\def\mdk{\ensuremath{\mathbb{K}}}
\def\mdr{\ensuremath{\mathbb{R}}}
\def\mdq{\ensuremath{\mathbb{Q}}}
\def\mdz{\ensuremath{\mathbb{Z}}}
\def\mdn{\ensuremath{\mathbb{N}}}
\def\mdh{\ensuremath{\mathbb{H}}}
\begin{document}
\appendix
\markboth{Symbolverzeichnis}{Symbolverzeichnis}
\twocolumn
\chapter*{Symbolverzeichnis}
\addcontentsline{toc}{chapter}{Symbolverzeichnis}
%%%%% Mengenoperationen
\section*{Mengenoperationen}
% Set \mylengtha to widest element in first column; adjust
% \mylengthb so that the width of the table is \columnwidth
\settowidth\mylengtha{$A \subseteq B$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$A^C $ & Komplement der Menge $A$\\
$\mathcal{P}(M)$ & Potenzmenge von $M$\\
$\overline{M}$ & Abschluss der Menge $M$\\
$\partial M$ & Rand der Menge $M$\\
$M^\circ$ & Inneres der Menge $M$\\
$A \times B$ & Kreuzprodukt zweier Mengen\\
$A \subseteq B$ & Teilmengenbeziehung\\
$A \subsetneq B$ & echte Teilmengenbeziehung\\
$A \setminus B$ & $A$ ohne $B$\\
$A \cup B$ & Vereinigung\\
$A \dcup B$ & Disjunkte Vereinigung\\
$A \cap B$ & Schnitt
\end{xtabular}
%%%%% Geometrie
\section*{Geometrie}
\settowidth\mylengtha{$\overline{AB} \cong \overline{CD}$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$AB$ & Gerade durch die Punkte $A$ und $B$\\
$\overline{AB}$ & Strecke mit Endpunkten $A$ und $B$\\
$\triangle ABC$ & Dreieck mit Eckpunkten $A, B, C$\\
$\overline{AB} \cong \overline{CD}$ & Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
$|K|$ & Geometrische Realisierung des Simplizialkomplexes~$K$
\end{xtabular}
%%%%% Gruppen
\section*{Gruppen}
\settowidth\mylengtha{$\Homoo(X)$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$\Homoo(X)$ & Homöomorphis\-men\-gruppe\\
$\Iso(X)$ & Isometriengruppe\\
$\GL_n(K)$ & Allgemeine lineare Gruppe (von \textit{\textbf{G}eneral \textbf{L}inear Group})\\
$\SL_n(K)$ & Spezielle lineare Gruppe\\
$\PSL_n(K)$ & Projektive lineare Gruppe\\
$\Perm(X)$ & Permutationsgruppe\\
$\Sym(X)$ & Symmetrische Gruppe
\end{xtabular}
\end{document}
答え2
遅くなりましたが、こちらは私のもう一つの答え。
\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}
\usepackage{amsmath,amssymb}% math symbols / fonts
%\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{braket} % needed for \Set
\usepackage{parskip} % nicer paragraphs
\usepackage{fancyhdr}
\usepackage{microtype}
\usepackage{multicol}
\usepackage[
bookmarks,
bookmarksnumbered,
hypertexnames=false,
pdfpagelayout=OneColumn,
colorlinks,
hyperindex=false,
hidelinks=true,
]{hyperref} % has to be last (almost)
\usepackage[german,nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}%
\renewcommand{\headrulewidth}{0pt}%
}
\allowdisplaybreaks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand\fB{\mathfrak{B}}
\newcommand\calS{\mathcal{S}}
\newcommand\fT{\mathfrak{T}}
\newcommand\fU{\mathfrak{U}}
\newcommand\atlas{\mathcal{A}}
\newcommand\praum{\mathcal{P}}
\DeclareMathOperator{\rang}{Rg}
\newcommand\dcup{\mathbin{\dot{\cup}}}
\DeclareMathOperator\GL{\mathrm{GL}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\DeclareMathOperator\SL{SL}
\DeclareMathOperator\PSL{PSL}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}
\newcommand\mda{\mathbb{A}}
\newcommand\mdp{\mathbb{P}}
\newcommand\mdc{\mathbb{C}}
\newcommand\mdk{\mathbb{K}}
\newcommand\mdr{\mathbb{R}}
\newcommand\mdq{\mathbb{Q}}
\newcommand\mdz{\mathbb{Z}}
\newcommand\mdn{\mathbb{N}}
\newcommand\mdh{\mathbb{H}}
\makeatletter
\newlength{\symbolswd}
\newenvironment{symbols}
{%
\begin{multicols*}{2}[\chapter*{Symbolverzeichnis}]
\small
\setlength{\parindent}{0pt}%
\setlength{\parskip}{0pt}%
\edef\current@symbolswd{\the\symbolswd}%
\interlinepenalty=10000 % no page break in a two line entry
}
{%
\ifdim\current@symbolswd=\symbolswd
\else
\@latex@warning@no@line{Rerun to get list of symbols right}%
\fi
\immediate\write\@auxout{\global\symbolswd=\the\symbolswd}%
\end{multicols*}
}
\newcommand{\entry}[2]{%
\par
\sbox\z@{$#1$\qquad}%
\ifdim\wd\z@>\symbolswd \setlength{\symbolswd}{\wd\z@}\fi
\raggedright
\hangindent=\symbolswd
\makebox[\symbolswd][s]{$#1$\leaders\hbox to 4pt{\hss.\hss}\hfill}%
\hspace{0pt}#2\par
}
\makeatother
\begin{document}
\begin{symbols}
\section*{Mengenoperationen}
\entry{A^C}{Komplement der Menge~$A$}
\entry{\mathcal{P}(M)}{Potenzmenge von~$M$}
\entry{\overline{M}}{Abschluss der Menge~$M$}
\entry{\partial M}{Rand der Menge~$M$}
\entry{M^\circ}{Inneres der Menge~$M$}
\entry{A \times B}{Kreuzprodukt zweier Mengen}
\entry{A \subseteq B}{Teilmengenbeziehung}
\entry{A \subsetneq B}{echte Teilmengenbeziehung}
\entry{A \setminus B}{$A$ ohne~$B$}
\entry{A \cup B}{Vereinigung}
\entry{A \dcup B}{Disjunkte Vereinigung}
\entry{A \cap B}{Schnitt}
\section*{Geometrie}
\entry{AB}{Gerade durch die Punkte $A$ und~$B$}
\entry{\overline{AB}}{Strecke mit Endpunkten $A$ und~$B$}
\entry{\triangle ABC}{Dreieck mit Eckpunkten $A, B, C$}
\entry{\overline{AB} \cong \overline{CD}}{Die Strecken $\overline{AB}$
und $\overline{CD}$ sind isometrisch}
\entry{|K|}{Geometrische Realisierung des Simplizialkomplexes~$K$}
\section*{Gruppen}
\entry{\Homoo(X)}{Homöomorphis\-men\-gruppe}
\entry{\Iso(X)}{Isometriengruppe}
\entry{\GL_n(K)}{Allgemeine lineare Gruppe
(von \textit{\textbf{G}eneral \textbf{L}inear Group})}
\entry{\SL_n(K)}{Spezielle lineare Gruppe}
\entry{\PSL_n(K)}{Projektive lineare Gruppe}
\entry{\Perm(X)}{Permutationsgruppe}
\entry{\Sym(X)}{Symmetrische Gruppe}
\end{symbols}
\end{document}
このコードの利点は、tabular
(またはそのバリエーション) を使用しないことです。
注目すべき違い:\parskip
はゼロに設定され、multicols
2 つの列を取得するために使用されるため、ページ区切りは自動的に行われ、\small
列\raggedright
が狭いために必要になります。