三角関数の pgfmath の精度を向上させる簡単な方法はありますか?

三角関数の pgfmath の精度を向上させる簡単な方法はありますか?

を使用して三角関数の値の表を作成したいのですpgfmathが、精度が少しずれています。 内でこれを改善する方法はありますかTikZ?

これは私が先ほど投稿した同様の質問に関連しています:Expl3 を使用して丸められた数値の末尾にゼロを埋め込む方法はありますか?

これが私の現在の動作例です:

\documentclass{article}

\usepackage{tikz}
\usetikzlibrary{calc,fixedpointarithmetic}

\def\mynum{0}
\def\myvoffset{0pt}

\usepackage[margin=0.5in]{geometry}

\begin{document}

Using \texttt{TikZ}

\begin{tikzpicture}[/pgf/number format/.cd,fixed,precision=4,verbatim]

  \coordinate(UL) at (0,0);

  \node at (UL) {Degrees};
  \node[anchor=west] at ($(UL.west)+(1cm,0)$) {$\sin$};
  \node[anchor=west] at ($(UL.west)+(2.75cm,0)$) {$\cos$};
  \node[anchor=west] at ($(UL.west)+(4.50cm,0)$) {$\tan$};

  \foreach \myn in {1,2,3,...,45}
  {
    \pgfmathparse{int(mod(\myn-1,5))}
    \ifnum\pgfmathresult=0\relax
      \xdef\myvoffset{\dimexpr\myvoffset+1.350\baselineskip}%%
    \else
      \xdef\myvoffset{\dimexpr\myvoffset+1.00\baselineskip}%%
    \fi

    \coordinate (DEG/\myn)   at ($(UL.west)-(0,\myvoffset)$);
    \coordinate (DEG/S/\myn) at ($(DEG/\myn)+(1cm,0)$);
    \coordinate (DEG/C/\myn) at ($(DEG/S/\myn)+(1.75cm,0)$);
    \coordinate (DEG/T/\myn) at ($(DEG/C/\myn)+(1.75cm,0)$);

    \node[anchor=east] at (DEG/\myn) {$\myn^\circ$};
    \pgfmathparse{sin(\myn)} \node[anchor=west] at (DEG/S/\myn) {\texttt{\pgfmathprintnumber{\pgfmathresult}}};
    \pgfmathparse{cos(\myn)} \node[anchor=west] at (DEG/C/\myn) {\texttt{\pgfmathprintnumber{\pgfmathresult}}};
    \pgfmathparse{tan(\myn)} \node[anchor=west] at (DEG/T/\myn) {\texttt{\pgfmathprintnumber{\pgfmathresult}}};

  }

\end{tikzpicture}

\end{document}

ここに画像の説明を入力してください

答え1

についてはわかりませんがpgfmath、 を使用すると、expl3次のようにテーブルをコンパイルできます。

\documentclass{article}
\usepackage[margin=1cm]{geometry}

\usepackage{array,siunitx}

\sisetup{
  add-decimal-zero,
  round-precision=5,
  round-mode=places,
  round-integer-to-decimal,
  group-digits=false,
  detect-all,
}

\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\trigtable}{ }
 {
  \__aellett_do_trig:
  \begin{tabular}{r *{3}{ >{\ttfamily}r }}
  & \multicolumn{1}{c}{$\sin$}
  & \multicolumn{1}{c}{$\cos$}
  & \multicolumn{1}{c}{$\tan$}
  \\
  \tl_use:N \l__aellett_body_tl
  \end{tabular}
 }

\tl_new:N \l__aellett_body_tl

\cs_new:Npn \aellett_compute:nn #1 #2
 {
  \num { \fp_to_decimal:n { \fp_eval:n { round ( #1(#2) , 5 ) } } }
 }

\cs_new_protected:Npn \__aellett_do_trig:
 {
  \tl_clear:N \l__aellett_body_tl
  \int_step_inline:nnnn { 1 } { 1 } { 89 }
   {
    \tl_put_right:Nn \l__aellett_body_tl { $##1^\circ$ & }
    \tl_put_right:Nx \l__aellett_body_tl
     { 
      \aellett_compute:nn { sind } { ##1 } &
      \aellett_compute:nn { cosd } { ##1 } &
      \aellett_compute:nn { tand } { ##1 } 
     }
    \int_compare:nTF { \int_mod:nn { ##1 } { 5 } == 0 }
     {
      \tl_put_right:Nn \l__aellett_body_tl { \\[1ex] }
     }
     {
      \tl_put_right:Nn \l__aellett_body_tl { \\ }
     }
   }
  % 90 degrees
  \tl_put_right:Nx \l__aellett_body_tl
   {
    $90^\circ$ &
    \aellett_compute:nn { sind } { 90 } &
    \aellett_compute:nn { cosd } { 90 } &
    --- 
   }

 }

\ExplSyntaxOff

\begin{document}
\tiny
\trigtable

\end{document}

始まりはこうです:

始める

89 度で何が起こるかを示すために、ここで終わります。

終わり

bc89 度のタンジェントに対して返される値と比較するために 5 桁を使用しました。

57.28996163075942465214

答え2

でオプションを拡張しますfixed zerofill

\documentclass{article}
\pagestyle{empty}
\usepackage{tikz}
\usetikzlibrary{calc,fixedpointarithmetic}
\def\mynum{0}
\def\myvoffset{0pt}
\usepackage[margin=0.5in]{geometry}

\begin{document}
%Using \texttt{TikZ}
\begin{tikzpicture}[/pgf/number format/.cd,fixed,precision=4,verbatim, fixed zerofill]
  \coordinate(UL) at (0,0);
  \node at (UL) {Degrees};
  \node[anchor=west] at ($(UL.west)+(1cm,0)$) {$\sin$};
  \node[anchor=west] at ($(UL.west)+(2.75cm,0)$) {$\cos$};
  \node[anchor=west] at ($(UL.west)+(4.50cm,0)$) {$\tan$};
  \foreach \myn in {1,2,3,...,45}
  {
    \pgfmathparse{int(mod(\myn-1,5))}
    \ifnum\pgfmathresult=0\relax
      \xdef\myvoffset{\dimexpr\myvoffset+1.350\baselineskip}%%
    \else
      \xdef\myvoffset{\dimexpr\myvoffset+1.00\baselineskip}%%
    \fi
    \coordinate (DEG/\myn)   at ($(UL.west)-(0,\myvoffset)$);
    \coordinate (DEG/S/\myn) at ($(DEG/\myn)+(1cm,0)$);
    \coordinate (DEG/C/\myn) at ($(DEG/S/\myn)+(1.75cm,0)$);
    \coordinate (DEG/T/\myn) at ($(DEG/C/\myn)+(1.75cm,0)$);
    \node[anchor=east] at (DEG/\myn) {$\myn^\circ$};
    \pgfmathparse{sin(\myn)} \node[anchor=west] at (DEG/S/\myn) {\texttt{\pgfmathprintnumber{\pgfmathresult}}};
    \pgfmathparse{cos(\myn)} \node[anchor=west] at (DEG/C/\myn) {\texttt{\pgfmathprintnumber{\pgfmathresult}}};
    \pgfmathparse{tan(\myn)} \node[anchor=west] at (DEG/T/\myn) {\texttt{\pgfmathprintnumber{\pgfmathresult}}};
  }
\end{tikzpicture}
\end{document}

ムウェ

答え3

標準の TeX 演算では、精度が非常に制限されます。より正確な結果が必要な場合は、外部プログラムまたは luatex などの TeX の拡張機能を使用する必要がある場合があります。

パッケージの使用電卓Tikz で得られる結果と同様の結果が得られます。

\documentclass{article}
\usepackage{calculator}
\usepackage{ifthen}

\begin{document}
\newcounter{angle}
\newcommand{\trigfunctions}[1]{%
    #1^{\mathrm{o}} &
    \DEGREESSIN{#1}{\sine}
    \ROUND[4]{\sine}{\sine}
    \sine & 
    \DEGREESCOS{#1}{\cosine}
    \ROUND[4]{\cosine}{\cosine}
    \cosine  & 
    \DEGREESTAN{#1}{\tangent}
    \ROUND[4]{\tangent}{\tangent}
    \tangent& 
    \DEGREESCOT{#1}{\cotangent}
    \ROUND[4]{\cotangent}{\cotangent}
    \cotangent \\}

\small
\[
\begin{array}{*{5}{r}}
\multicolumn{1}{c}{\alpha} & \multicolumn{1}{c}{\sin\alpha} & 
                             \multicolumn{1}{c}{\cos \alpha} & 
                             \multicolumn{1}{c}{\tan\alpha} & 
                             \multicolumn{1}{c}{\cot\alpha} \\
\whiledo{\value{angle}<45}{\stepcounter{angle}\trigfunctions{\theangle}}
\end{array}
\]
\end{document}

三角テーブル

関連情報