
私は LaTeX ソース ファイルで 2 列レイアウトを使用しており、一連の (不等式の) 方程式を表示したいのですが、それらを左の列内に保持したいと考えていました。しかし、\begin{align*} 環境を使用すると、方程式が列からあふれ、右の列に余分なスペースが占有されます。何が起こるかを確認するには、ここに添付した画像を参照してください。方程式を最初の列内に収めるにはどうすればよいでしょうか。
これが私の LaTeX ソース コードです。そして、これが試すことができる MWE です。
% \documentclass[conference]{IEEEtran}
\documentclass[10pt,conference,letterpaper]{IEEEtran}
\usepackage{amsmath}
\begin{document}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\begin{align*}
& \sum\nolimits_{e \in E^*} COST(g(e))\\
&= \sum\nolimits_{e \in S_1} COST(g(e))
+ \sum\nolimits_{e \in S_2} COST(g(e))
+ \sum\nolimits_{e \in S_3} COST(g(e))\\
&\le
2(1+\epsilon) COST(T^* \setminus T)
+ COST(T^* \cap T)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)(COST(T^* \setminus T) + COST(T^* \cap T))
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)COST(T^*)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4(1+\epsilon)OPT_n
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4+10\epsilon OPT_n
\end{align*}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\end{document}
答え1
これは 1 つの解決策です。以下に示すように、 resizebox
fromgraphicx
パッケージとparbox
combo を使用します。
\resizebox{0.48\textwidth}{!}{\parbox{\linewidth}{ math envrionment}}
または
{\tiny \begin{align*} ... \end{align*} environment}
コード
\documentclass[10pt,conference,letterpaper]{IEEEtran}
\usepackage{amsmath,graphicx}
\begin{document}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\resizebox{0.48\textwidth}{!}{\parbox{\linewidth}{
\begin{align*}
& \sum\nolimits_{e \in E^*} COST(g(e))\\
&= \sum\nolimits_{e \in S_1} COST(g(e))
+ \sum\nolimits_{e \in S_2} COST(g(e))
+ \sum\nolimits_{e \in S_3} COST(g(e))\\
&\le
2(1+\epsilon) COST(T^* \setminus T)
+ COST(T^* \cap T)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)(COST(T^* \setminus T) + COST(T^* \cap T))
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)COST(T^*)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4(1+\epsilon)OPT_n
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4+10\epsilon OPT_n
\end{align*}
}}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs
\end{document}
答え2
数式で使用するフォント サイズを周囲のテキストで使用するフォント サイズよりも小さくしてしまうような手順は実行しないことをお勧めします。代わりに、次のアプローチを採用することをお勧めします。
\nolimits
各マクロの後に修飾子を使用しないでください\sum
。代わりに、\sum{...}
式をディレクティブで囲みます\smashoperator
。これにより、合計記号の前後の空白の量が削減されます。(マクロはパッケージ\smashoperator
によって提供されmathtools
、パッケージの拡張機能(およびamsmath
パッケージのロード)です。)3 行目と 4 行目に追加の改行を挿入します。
オプション: 「COST」と「OPT」をローマン体 (直立) で表示します。現在、TeX は COST と OPT を 4 文字と 3 文字の変数のグループ、つまり と として解釈するため、
C
O
S
T
文字O
P
T
間のスペースが緩くなり、最適ではなくなります。(変数名を直立体ではなくイタリック体で表示したい場合は、と を定義するマクロで\textit
の代わりにを使用します。)\textup
\COST
\OPT
\begin{align*}
& \smashoperator{\sum_{e \in E^*}} \COST(g(e))\\
&= \smashoperator{\sum_{e \in S_1}} \COST(g(e)) +
\smashoperator{\sum_{e \in S_2}} \COST(g(e)) +
\smashoperator{\sum_{e \in S_3}} \COST(g(e))\\
&\le 2(1+\epsilon) \COST(T^* \setminus T) + \COST(T^* \cap T)\\
&\qquad + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 2(1+\epsilon)(\COST(T^* \setminus T) + \COST(T^* \cap T))\\
&\qquad + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 2(1+\epsilon)\COST(T^*) + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 4(1+\epsilon)\OPT_n + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 4+10\eps
イルン \OPT_n \end{align*}