
2 つの円から同じ距離にある点をホストする双曲線を作成したいと思います。正確さにはあまり興味がありませんが、学生にアイデアを与える図に関心があります。これが私のコードです:
\documentclass{article}
\usepackage{amsmath}
\usepackage{tikz}
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}
\draw (2,2) circle (1cm);
\draw (5,0) .. controls (6,4) and (5,6) .. (3,6);
\draw (10,2) circle (3cm);
\end{tikzpicture}
\caption{All points that are equidistant from both circles, lie on the hyperbola}
\end{figure}
\end{document}
助けてもらえますか?
答え1
次の例では、画像領域(その一部)を下から上へ1行ずつスキャンして、バツ現在の点と円の間の距離の差が最小になる位置。点からの距離は、現在の点から円の中心までの距離から半径を引くことで計算できます (現在の点が円の内側にある場合は絶対値を取ります)。
計算は TikZ で行うことができますが、TeX では実数の高速計算は提供されないため、このブルート フォース計算の場合は、別のプログラミング言語を使用した方が計算速度が向上します。
たとえば、Perl スクリプト。スクリプトの上部領域でパラメータが変更されます。plot
描画コマンドに適したポイントのリストを出力します。
#!/usr/bin/env perl
use strict;
use warnings;
my ($ax, $ay, $ar) = (2, 2, 1);
my ($bx, $by, $br) = (10, 2, 3);
my ($ymin, $ymax) = (-4, 8);
my ($xmin, $xmax) = ($ax, $bx);
my ($xstep, $ystep) = (.01, .01);
sub circledistance ($$$$$) {
my ($radius, $mx, $my, $x, $y) = @_;
my $xdiff = $mx - $x;
my $ydiff = $my - $y;
my $result = sqrt($xdiff * $xdiff + $ydiff * $ydiff) - $radius;
$result = -$result if $result < 0;
return $result;
}
sub round ($) {
my $value = shift;
return int($value + .5);
}
my $xcount = round(($xmax - $xmin)/$xstep);
my $ycount = round(($ymax - $ymin)/$ystep);
my @points;
for (my $yi = 0; $yi <= $ycount; $yi++) {
my $diff = 1000000;
my $point = '';
my $y = $ymin + ($ymax - $ymin)*$yi/$ycount;
for (my $xi = 0; $xi <= $xcount; $xi++) {
my $x = $xmin + ($xmax - $xmin)*$xi/$xcount;
my $a = circledistance($ar, $ax, $ay, $x, $y);
my $b = circledistance($br, $bx, $by, $x, $y);
my $d = $a - $b;
$d = -$d if $d < 0;
if ($d < $diff) {
$diff = $d;
$point = "($x,$y)";
}
}
push @points, $point;
}
print "$_\n" foreach @points;
1;
__END__
次にTeXコード:
\documentclass{article}
\usepackage{amsmath}
\usepackage{tikz}
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}
\def\AX{2}
\def\AY{2}
\def\AR{1}
\def\BX{10}
\def\BY{2}
\def\BR{3}
\draw (\AX,\AY) circle (\AR cm);
\draw (\BX,\BY) circle (\BR cm);
\draw[red] plot[smooth] coordinates{
(4.16,-4)
(4.16,-3.99)
(4.16,-3.98)
(4.16,-3.97)
(4.16,-3.96)
(4.17,-3.95)
% ... <remaining lines of the output of the Perl script>
};
\end{tikzpicture}
\caption{All points that are equidistant from both circles, lie on the
hyperbola}
\end{figure}
\end{document}
答え2
少し壊れやすく (つまり、大きな数値では壊れてしまいます)、円間の角度 (つまり、円が水平になる) は考慮されませんが、ほとんどの場合、余弦定理の再配置のみが必要になります。
\documentclass[tikz,border=5]{standalone}
\usetikzlibrary{math}
\begin{document}
\begin{tikzpicture}
\tikzmath{%
integer \i, \j;
\r = 2;
\R = 6;
\c = \r + 4 + \R;
{
\draw (0, 0) circle [radius=\r];
\draw (\c, 0) circle [radius=\R];
};
for \i in {1,...,50}{
\C = 180 - 100 + \i*4;
\Z = (\c^2 - \r^2 - \R^2 + 2 * \r*\R) / (2 * (1 - cos(\C)));
\q = (-(\r+\R) + sqrt((\r+\R)^2 - 4 * (\r*\R - \Z))) / 2;
\a = \q + \r;
\b = \q + \R;
\B = asin(\b * sin(\C) / \c);
{ \coordinate (n-\i) at (\B:\a); };
if (\i > 1) then {
\j = \i - 1;
{ \draw (n-\j) -- (n-\i); };
};
};
}
\end{tikzpicture}
\end{document}
答え3
完全な放物線を気にしないのであれば、ここに簡単な解決策があります。放物線曲線の終点だけでなく、コントロールの適切な座標を選択することが重要です。補助グリッドを描画し、最終実行時に削除すると、このタスクに役立ちます。
\documentclass{article}
\usepackage{amsmath,tikz}
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}[line width=.7pt, scale=.7]
\draw (2,2) circle (1cm);
\draw (2,-3) .. controls (6,1) and (6,3) .. (2,7);
\draw (10,2) circle (3cm);
\end{tikzpicture}
\caption{All points that are equidistant from both circles, lie on the hyperbola}
\end{figure}
\end{document}
答え4
双曲線を計算するソリューション。それほど難しくなく、OP はやり方を知っていたと思います。円の半径と距離は最初の例と同じです。図は正確でカスタマイズ可能ですが、買い手責任負担dimension too large
:少しの変更でもエラーが発生しやすくなります。
以下(および LaTeX ドキュメント)で、関連する数学について少し説明を追加します。
コード
\documentclass{article}
\usepackage{mathtools} % for the maths part (no needed for the picture)
\usepackage{cancel} % ditto
\usepackage{tikz}
\begin{document}
\begin{figure}[ht]\centering
\begin{tikzpicture}[scale=0.9]
% parameters
\def\ra{1} % radius, left circle
\def\rb{3} % radius, right circle
\def\dc{8} % distance between centers
% maths (explained below)
\pgfmathsetmacro\xa{-0.5*(\dc+\ra-\rb)} % placing the circles at the
\pgfmathsetmacro\xb{ 0.5*(\dc-\ra+\rb)} % same distance form the origin
\pgfmathsetmacro\p{(\xb-\xa)/(\ra-\rb)}
\pgfmathsetmacro\q{(\xa*\xa-\xb*\xb-(\ra-\rb)*(\ra-\rb))/(2*(\ra-\rb))}
\pgfmathsetmacro\k{\p*\q+\xb}
\tikzset{declare function={
fx(\x)=2*\k*cos(\x)*cos(\x)/(1-\p*\p*cos(\x)*cos(\x)); % hyperbola, x=rho(theta)*cos(theta)
fy(\x)=2*\k*sin(\x)*cos(\x)/(1-\p*\p*cos(\x)*cos(\x)); % hyperbola, y=rho(theta)*sin(theta)
dd(\x)=sqrt((fx(\x)-\xa)*(fx(\x)-\xa)+fy(\x)*fy(\x))-\ra; % distance from the hyperbola to A (or B)
}}
% circles
\draw[thick] (\xa,0) coordinate (A) circle (\ra);
\draw[thick] (\xb,0) coordinate (B) circle (\rb);
% hyperbola
\def\d{7} % domain
\draw[red,very thick] plot[domain=90-\d:90+\d] ({fx(\x)},{fy(\x)});
% tangent circles (not in the original picture)
\clip (\xa-2*\ra,{1-fy(90-\d)}) rectangle (\xb+\rb,{-1-fy(90+\d)});
\foreach\i in {-\d,...,\d}
{
\coordinate (aux) at (({fx(90+\i))},{fy(90+\i))});
\draw[gray] (aux) circle ({dd(90+\i)}) \ifnum\i=\d node[black,above] {$P(x,y)$}\fi;
\draw[gray,dashed] (A) -- (aux) -- (B);
\draw[fill=white] (aux) circle (0.5mm);
}
\foreach\i in {A,B}
\draw[fill=white] (\i) circle (0.5mm) node[below] {$\i$};
\end{tikzpicture}
\caption{All points that are equidistant from both circles lie on the hyperbola.}
\end{figure}
% Ignore this if you don't need to know about the maths
\section{The maths}
The circle centers are $A(x_a,0)$, $B(x_b,0)$, and let $P(x,y)$ be a generic point at the hyperbola. Then,
\begin{align*}
d(P,A) & = d(P,B);\\
\sqrt{(x-x_a)^2+y^2}-r_a & =\sqrt{(x-x_b)^2+y^2}-r_b;\\
(x-x_a)^2+\cancel{y^2} & =(x-x_b)^2+\cancel{y^2}+(r_a-r_b)^2+\\
& \phantom{{}={}}+2(r_a-r_b)\sqrt{(x-x_b)^2+y^2};\\
2(x_b-x_a)x+x_a^2-x_b^2+(r_a-r_b)^2 & =2(r_a-r_b)\sqrt{(x-x_b)^2+y^2};\\
\underbrace{\frac{x_b-x_a}{r_a-r_b}}_p x+\underbrace{\frac{x_a^2-x_b^2+(r_a-r_b)^2}{2(r_a-r_b)}}_q & = \sqrt{(x-x_b)^2+y^2};\\
(px+q)^2 & =(x-x_b)^2+y^2;\\
p^2x^2+2pqx+\cancel{q^2} & = x^2+y^2-2x_bx+\cancel{x_b^2};\\
\intertext{If we take the origin equidistant form both circles, we can cancel the constant terms. Now we change to polar coordinates, $x=\rho\cos\theta$, $y=\rho\sin\theta$.}
p^2\rho^2\cos^2\theta+2pq\rho\cos\theta & =\rho^2-2x_b\rho\cos\theta;\\
p^2\rho\cos^2\theta+2pq\cos\theta & =\rho-2x_b\cos\theta;\\
\rho & =\frac{2\overbrace{(pq+x_b)}^k\cos\theta}{1-p^2\cos^2\theta}=\frac{2k\cos\theta}{1-p^2\cos^2\theta}.
\end{align*}
\end{document}
出力
そして数学
円の中心はA(x_a,0), B(x_b,0)であり、P(x,y)は双曲線上の一般的な点であるとします。
両方の円から等距離に原点を置くと、定数項をキャンセルできます。次に、極座標に変更します。