私はLNCSフォーマットのLaTeXで2つのテーブルを並列に保持しようとしています。また、この答えしかし、テーブルがひどくフォーマットされてしまいます。コードと結果は次のとおりです。
\begin{table}
\parbox{.4\linewidth}{
\centering
\begin{tabular}{l}
\hline
\textbf{Eliminate($D_s$):}\\
\textbf{Input:} ~Subspace $D_s \subseteq D$\\
\textbf{Output:} None\\
\hline
1.~\textbf{if} $D_s$ is not marked as \textbf{\textit{eliminated}} \textbf{then}\\
2.~~~~~Mark $D_s$ as \textbf{\textit{eliminated}}\\
3.~~~~~\textbf{for each} $D'_s \subset D_s$ such that $|D_s|-|D'_s|=1$ \textbf{do}\\
4.~~~~~~~~~$Eliminate(D'_s)$\\
5.~~~~~\textbf{end for}\\
6.~\textbf{end if}\\
\hline
\end{tabular}
\caption{Eliminate Function}
\label{topdown_2}
}
\hfill
\parbox{.4\linewidth}{
\centering
\begin{tabular}{l}
\hline
\textbf{NonISQ($D_1$, $D_2$):}\\
\textbf{Input:} ~Subspaces $D_1, D_2 \subseteq D$\\
\textbf{Output:} None\\
\hline
1.~Let $D_s = D_1 \cup D_2$\\
2.~\textbf{if} $D_s$ is not marked as \textbf{\textit{eliminated}} \textbf{then}\\
2.~~~~~Mark $D_s$ as \textbf{\textit{non-ISQ}}\\
3.~~~~~\textbf{for each} $D'_s \subset D_s$ such that\\
~~~~~~~~~~~~~~$\exists q \in D_2$ and $q \in D_s$ \textbf{do}\\
4.~~~~~~~~~$NonISQ(D'_s)$\\
5.~~~~~\textbf{end for}\\
6.~\textbf{end if}\\
\hline
\end{tabular}
\caption{NonISQ Function}
\label{topdown_3}
}
\end{table}
答え1
これらのテーブルを並べて配置する場合は、スケールを変更する必要があると思います。
\documentclass{book}
\usepackage{graphicx}
\begin{document}
\begin{table}
\parbox{.45\linewidth}{
\centering
\scalebox{.6}{%
\begin{tabular}{l}
\hline
\textbf{Eliminate($D_s$):}\\
\textbf{Input:} ~Subspace $D_s \subseteq D$\\
\textbf{Output:} None\\
\hline
1.~\textbf{if} $D_s$ is not marked as \textbf{\textit{eliminated}} \textbf{then}\\
2.~~~~~Mark $D_s$ as \textbf{\textit{eliminated}}\\
3.~~~~~\textbf{for each} $D'_s \subset D_s$ such that $|D_s|-|D'_s|=1$ \textbf{do}\\
4.~~~~~~~~~$Eliminate(D'_s)$\\
5.~~~~~\textbf{end for}\\
6.~\textbf{end if}\\
\hline
\end{tabular}
}
\caption{Eliminate Function}
\label{topdown_2}
}
\hfill
\parbox{.45\linewidth}{
\centering
\scalebox{.6}{%
\begin{tabular}{l}
\hline
\textbf{NonISQ($D_1$, $D_2$):}\\
\textbf{Input:} ~Subspaces $D_1, D_2 \subseteq D$\\
\textbf{Output:} None\\
\hline
1.~Let $D_s = D_1 \cup D_2$\\
2.~\textbf{if} $D_s$ is not marked as \textbf{\textit{eliminated}} \textbf{then}\\
2.~~~~~Mark $D_s$ as \textbf{\textit{non-ISQ}}\\
3.~~~~~\textbf{for each} $D'_s \subset D_s$ such that\\
~~~~~~~~~~~~~~$\exists q \in D_2$ and $q \in D_s$ \textbf{do}\\
4.~~~~~~~~~$NonISQ(D'_s)$\\
5.~~~~~\textbf{end for}\\
6.~\textbf{end if}\\
\hline
\end{tabular}
}
\caption{NonISQ Function}
\label{topdown_3}
}
\end{table}
\end{document}