質問が 2 つあります。1 つ目は、2 つのテーブルの間にスペースを作り、行間の対応を示す矢印を描く方法です (つまり、左側のテーブルの最初の行が右側のテーブルの最初の行に対応します)。2 つ目は、各テーブルの 3 行目のフォントを小さくする方法です。私は自分の試みを投稿しましたが、今はうまくいっています。
\documentclass {article}
\usepackage{array}
\usepackage{multirow}
\usepackage{amsmath,amsfonts,amssymb,array,subfigure,graphics,epsfig}
\usepackage{mathrsfs}
\usepackage{extarrows}
\usepackage{caption}
\usepackage{float}
\usepackage{multirow}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{blindtext}
\usepackage{graphicx}
\usepackage{flexisym}
\newcommand{\vect}[1]{\boldsymbol{#1}}
\usepackage[mathscr]{eucal}
\usepackage{color,soul}
\usepackage{enumitem}
\usepackage{cancel}
\usepackage{nicefrac}
\usepackage{flexisym}
\usepackage{ytableau}
\usepackage{youngtab}
\usepackage{mathtools}
\begin{document}%
\small
\begin{tabular}{cc}%
\begin{tabular}[t]{| m{3em} | m{5cm}|}
\hline
\multicolumn{2}{|c|}{Irreducibles for the maximal subgroups $G_{e}$} \\
\hline
\multicolumn{2}{|c|}{$S^{(0)}= 0 \ \ \mbox{[zero vector]}$} \\
\hline
\multicolumn{2}{|c|}{$S^{(2,1)}\ $} \\
\hline
\multicolumn{2}{|c|}{$
S^{(2,1)}= \Bigg\{c_{1} e_{_{\ytableausetup
{mathmode, boxsize=1em, centertableaux}\begin{ytableau}
\tiny{1} & 3 \\ 2
\end{ytableau}}}+c_{2}e_{_{\ytableausetup
{mathmode, boxsize=1em, centertableaux}\begin{ytableau}
\tiny{1} & 2 \\ 3
\end{ytableau}}}
\Bigg \}
$} \\
\hline
\end{tabular} &
\begin{tabular}[t]{| m{3em} | m{5cm}|}
\hline
\multicolumn{2}{|c|}{Irreducibles for the symmetric inverse monoid $I_{4}$} \\
\hline
\multicolumn{2}{|c|}{$R^{(0)}= 0 \ \ \mbox{zero vector.}$} \\
\hline
\multicolumn{2}{|c|}{$R^{(2,1)}$} \\
\hline
\multicolumn{2}{|c|}{$
R^{(2,1)}= \Bigg \{
c_{1}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
1 & 3 \\ 2
\end{ytableau}}}+c_{2}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
1 & 4 \\ 2
\end{ytableau}}}+c_{3}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
1 & 2 \\ 3
\end{ytableau}}}+c_{4}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
1 & 4 \\ 3
\end{ytableau}}}+c_{5}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
2 & 4 \\ 3
\end{ytableau}}}+c_{6}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
1 & 2 \\ 4
\end{ytableau}}}+c_{7}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
1 & 3 \\ 4
\end{ytableau}}}+c_{8}e_{_{\ytableausetup
{, smalltableaux, centertableaux}\begin{ytableau}
2 & 3 \\ 4
\end{ytableau}}}
\Bigg \} $} \\
\hline
\end{tabular} \tabularnewline
\end{tabular}
\end{document}
答え1
\documentclass {article}
\usepackage{mathtools}
\newcommand\tristrut{\rule[-1pt]{0pt}{5pt}}
\newcommand\tri[3]%
{\raisebox{-1ex}%
{\tiny\tabcolsep=1pt\renewcommand\arraystretch{0}%
\begin{tabular}{|c|c|}
\hline
\tristrut#1 & #2 \\
\hline
\tristrut#3 \\
\cline{1-1}
\end{tabular}%
}%
}
\begin{document}%
\[\renewcommand\arraystretch{1.5}%
\begin{array}{@{}c@{\quad\Longrightarrow\quad}c@{}}
\renewcommand\arraystretch{1}%
\begin{tabular}{@{}c@{}}
Irreducibles for the\\
maximal subgroups $G_{e}$
\end{tabular}
& \begin{tabular}{@{}c@{}}
Irreducibles for the\\
symmetric inverse monoid $I_{4}$
\end{tabular}
\\
S^{(0)}= 0\quad\text{zero vector}
& R^{(0)}= 0\quad\text{zero vector}
\\
S^{(2,1)}
& R^{(2,1)}
\\
S^{(2,1)}= \big\{c_1 e_{\tri132} +c_2e_{\tri123} \big\}
& \begin{aligned}[t]
R^{(2,1)}= \big \{
& c_1e_{\tri132} + c_2e_{\tri142} + c_3e_{\tri123} + c_4e_{\tri143} + {}\\
& c_5e_{\tri243} + c_6e_{\tri124} + c_7e_{\tri134} + c_8e_{\tri234}\quad \big \}
\end{aligned}
\end{array}
\]
\end{document}