LaTeX ヘッダー (fancyheadings) に句読点を入力するにはどうすればいいですか?

LaTeX ヘッダー (fancyheadings) に句読点を入力するにはどうすればいいですか?

私はここのガイドに従っていますhttp://www.fi.infn.it/pub/tex/doc/orig/fancyheadings.pdf

LaTeX の「fancyheadings」ヘッダー書式設定オプション。5 ページ目には、各ページのヘッダーを章と章のタイトルにする方法の例が示されています。

たとえば、彼らが提供するコードは次のようになります:

\lhead[\fancyplain{}{\slshape \rightmark}]{\fancyplain{}%
{\slshape \leftmark}}

結果は次のようになります:

"Chapter 1 Introduction"出力ページのヘッダーでは、Chapter 1 は章であり、Introduction は\chapter{Introduction}章ページの先頭から派生した章のタイトルです。

私の質問は、一体どうすればヘッダーを次のようなものにできるのかということです。

"Chapter 1: Introduction"または、"Chapter 1 | Introduction"章と章のタイトルの間に句読点が入ったもの。

もっとコードを投稿すべきかどうか教えてください。誰かがすぐに答えを知っていることを期待していますが、さらに情報が必要な場合はお知らせください。

答え1

1996 年に発行されたドキュメントは疑ってかかるべきです。実際、このfancyheadingsパッケージは約 20 年間廃止されています。

ドキュメントを確認fancyhdrして再定義する必要があります\chaptermark

\documentclass{book}
\usepackage{blindtext}

\usepackage{fancyhdr}

\pagestyle{fancy}
\fancyhf{} % clear all fields
\fancyhead[LE,RO]{\slshape\rightmark}
\fancyhead[RE,LO]{\slshape\leftmark}
\fancyfoot[C]{\thepage}
\renewcommand{\chaptermark}[1]{%
  \markboth{\MakeUppercase{%
    \ifnum\value{chapter}>0
      Chapter \thechapter\ $|$ % with a space!
    \fi
    #1%
  }}{}%
}

\begin{document}

\blinddocument

\end{document}

答え2

ここに画像の説明を入力してください

以下の方法でカスタマイズできます。

  • 章名に\renewcommand{\chaptermark}[1]{ \markboth{#1}{} }は を使用します#1。 は章名です。 たとえば#1を に置き換える\textit{#1}と、章名はヘッダーで斜体になります。 同じ概念がセクション名にも適用されます。\renewcommand{\sectionmark}[1]{ \markright{#1} }
  • この単語はChapterを使って変更できます\renewcommand{\chaptername}{Chapter}。次のような省略形も使用できます。Ch
  • ヘッダーは を使用してカスタマイズされ\fancypagestyle、ページスタイルは を使用して定義されます\pagestyle{mainmatter}。不要な場所(特に先頭)からページスタイルを削除するには、 \thispagestyle{empty}

ヘッダーを取得するための完全なコードは次のとおりですChapter 1: Introduction

\documentclass[twoside]{thesis}

    \usepackage{fancyhdr}

        \pagestyle{fancy} % allows for more advanced header and footer formats

                % Customizations
                \renewcommand{\chaptermark}[1]{ \markboth{#1}{} }  % customize chapter name here
                \renewcommand{\chaptername}{Chapter}
                \renewcommand{\sectionmark}[1]{ \markright{#1} } % customize section name here

                % Define headers
                \fancypagestyle{mainmatter}{
                                                % Header and footer lines
                                                \renewcommand{\headrulewidth}{0.5 pt}
                                                \renewcommand{\footrulewidth}{0 pt}

                                                % Headers
                                                \fancyhead{} % clear header field
                                                \fancyhead[RO]{ \textbf{ \chaptername\ \thechapter:\ \leftmark } \hspace{4mm} \thepage } % customize chapter name header here
                                                \fancyhead[LE]{ \thepage \hspace{4mm} \thesection \textbf{ \rightmark }  } % customize section name header here

                                                % Foot
                                                \fancyfoot{} % clear foot fields
                                                \fancyfoot[LE, RO]{By: Al-Motasem I. Aldaoudeyeh}
                                        }


\begin{document}

\thispagestyle{empty}

\title{Development of a Generalized PV Model in MATLAB/Simulink Using Datasheet Values}



\author{Al-Motasem I. Aldaoudeyeh
    \thanks{Al-Motasem I. Aldaoudeyeh is with the Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, 58102 USA e-mail: [email protected]}
}


\maketitle


\thispagestyle{empty}
\begin{abstract}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

\end{abstract}
\thispagestyle{empty}


\pagestyle{mainmatter}
\chapter{Chapter Name}


\section{Introduction}
\label{section:introduction}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.


\section{Numerical Results and Discussion}
\label{sec:results}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit.


\section{Conclusions}
\label{sec:conclusions}


    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.


\end{document}

関連情報