箇条書きの間、つまり 1 つの箇条書きの後に、その下に 2 つの短い文章を追加したいと思います。私のコードを参照してください。必要な内容は以下のとおりです。
\documentclass{amsart}
\newtheorem{thm}{Theorem}
\usepackage{xcolor}
\begin{document}
\section{\textcolor{blue}{Testing Nilpotence in linear time}}
Given a group $G$ in the form of mutiplication table, we want to check to decide divides the order of $G$}. Algorithm for testing nilpotence is given below. \\
\begin{itemize}
\item Compute the prime factorization of $n= p_1^{\alpha_1} \times p_2^{\alpha_2} \cdots p_i^{\alpha_i}$. \\
\item Determine the order of all elements in $G$. \\
\item For $1 \le i \le r$, check if $\mathcal{N}(p_i^{\alpha_i}) \neq p_i^{\alpha_i}$ then $G$ is not nilpotent. \\
\item Else output that $G$ is nilpotent
\end{itemize}
質問: 画像に示されているように小さなテキストを追加するにはどうすればよいですか?
答え1
という小さなユーティリティ マクロを作成することをお勧めします\aside
。\footnotesize
テキストが小さすぎる場合は、\small
代わりに を使用してください。
\documentclass{amsart}
\usepackage{xcolor}
\newcommand\aside[1]{\par\quad{\footnotesize(#1)}\par} % or "\small", if you prefer
\begin{document}
\section{\color{blue}Testing Nilpotence in linear time}
Given a group $G$ in the form of multiplication table, we want to check to
decide [...] divides the order of $G$. An algorithm for testing nilpotence
is given below.
\begin{itemize}
\item Compute the prime factorization of $n = p_1^{\alpha_1} \times
p_2^{\alpha_2} \cdots \times p_i^{\alpha_i}$.
\aside{Each $p_i^{\alpha_i}$ is the highest power}
\item Determine the order of all elements in $G$.
\aside{It can be done easily}
\item For $1 \le i \le r$, check if $\mathcal{N}(p_i^{\alpha_i}) \neq
p_i^{\alpha_i}$. If true, $G$ is not nilpotent.
\item Else, conclude that $G$ is nilpotent.
\end{itemize}
\end{document}
答え2
- mwe が不完全です ( が欠落しています
\end{document}
) - また、エラーも含まれています(
}
の後に 余分なもの$G$
) - 以降の項目はすべて
\\
不要です - (メイン)項目の下の追加行は、新しい行に記入するだけです(この行では小さいフォントサイズを選択できます)
- より良いフォーマットのためにパッケージを使用してください
enumitem
\documentclass{amsart}
\newtheorem{thm}{Theorem}
\usepackage{xcolor}
\usepackage{enumitem}
\begin{document}
\section{\textcolor{blue}{Testing Nilpotence in linear time}}
Given a group $G$ in the form of multiplication table, we want to check to decide divides the order of $G$. Algorithm for testing nilpotence is given below. %\\ had to be removed
\begin{itemize}[itemsep=1ex,leftmargin=1cm]
\item Compute the prime factorization of $n= p_1^{\alpha_1} \times p_2^{\alpha_2} \cdots p_i^{\alpha_i}$. % "\\" had to be removed
{\small(small text in the next line)}
\item Determine the order of all elements in $G$. % "\\" had to be removed
{\small(small text in the next line)}
\item For $1 \le i \le r$, check if $\mathcal{N}(p_i^{\alpha_i}) \neq p_i^{\alpha_i}$ then $G$ is not nilpotent. % "\\" had to be removed
{\small(small text in the next line)}
\item Else output that $G$ is nilpotent
\end{itemize}
\end{document}