編集:

編集:

以下のものがあります:

\documentclass[11pt, a4paper]{report}
\usepackage{bm}
\usepackage{amsfonts, graphicx, verbatim, amsmath,amssymb, amsthm}
\usepackage{color}
\usepackage{array}
\usepackage{setspace}% if you must (for double spacing thesis)
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage{tikz}
\usepackage{parskip}
\usepackage{lipsum}
    \newtheorem{theorem}{Theorem}[section]
\newtheorem{example}[theorem]{Example}   

 \begin{document}
    \begin{example} 
    Consider a random walk on the $n$-cycle. Let $\Omega = \mathbb{Z}_n = \lbrace 0, 1, 2, \cdots, n-1 \rbrace$ be the set of remainders modulo $n$. Also consider the transition matrix:
    \[
    P(x,y) = 
    \begin{cases} 
    \frac{1}{2} & \text{if } y=x+1\;\; (mod\;n)\\
    \frac{1}{2} & \text{if } y=x-1\;\; (mod\;n)\\
    0 & \text{otherwise}
    \end{cases}
    \]

    The associated Markov chain $X_t$ is called a random walk on the $n$-cycle. The sates can be visualised as equally spaced nodes arranged in a circle(see figure 1.1)
    \end{example}

    \begin{figure}[htbp]
        \centering
        \begin{tikzpicture}
        \foreach \i in {90,54,...,-234} {
            \draw[ultra thick] (\i:2)--({\i-36}:2);
        }
        \foreach \i in {90,18,...,-198} {
            \draw[fill=black] (\i:2) circle (1.25mm);
        }
        \foreach \i in {54,-18,...,-234} {
            \draw[fill=white] (\i:2) circle (1.25mm);
        }
        \begin{scope}[xshift=5cm]
        \foreach \i in {90,50,...,-230} {
            \draw[ultra thick] (\i:2)--({\i-40}:2);
            \draw[fill=black] (\i:2) circle (1.25mm);
        }
        \end{scope}
        \end{tikzpicture}
        \caption{Random walk on $\mathbb{Z}_10$ is periodic, since every step
    goes from an even state to an odd state, or vice-versa. Random
    walk on $\mathbb{Z}_9$ is aperiodic.}
        \label{my:figure}
    \end{figure}
    \end{document}

今、キャプションの間隔を「真ん中に押し込む」という意味で調整したいのですが、どのように進めればよいかわかりません。

編集: 上記と同様の質問ですが、この場合、キャプションがひどく見えます。これを伸ばすための修正方法はありますか?

\begin{example} Consider the graph $G$ following shown in figure 1.2. The transition matrix of a simple random walk $G$ is 

\begin{equation*}
P =
\begin{bmatrix}[1.25]
    0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
    \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} \\
    \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
    \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
    0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
    0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
\end{bmatrix}
\end{equation*}

\begin{figure}[htbp]
 \centering
 \ffigbox[1.1\FBwidth]{%
 \caption{An example of a vertex set $V = \lbrace 1, 2, 3, 4, 5, 6\rbrace$ with $10$ edges.}
 \label{my:figure}}%
 {\begin{tikzpicture}[bn/.style={circle,fill,draw,text=white,font=\sffamily,minimum
size=1mm},every node/.append style={bn}]
 \path node (1) {1} -- ++ (50:2.5) node (2) {2} -- ++(-95:1.75) node (3) {3}
 -- ++(-85:1.75) node (4) {4} -- ++(40:2.75) node (5) {5}
 -- ++ (0,1.75) node (6) {6} ;
 \draw[thick] (1)--(2)--(6)--(5)--(4)--(1)--(3)--(5)--(2)--(3)--(4);
\end{tikzpicture}}%
\end{figure}
\end{example}

これを最大 2 行に延長する方法はありますか?

答え1

私の理解が正しければ、前文に次の2行を使用することができます。

\usepackage{caption} % <================================================
\captionsetup{width=0.8\textwidth} % <==================================

キャプションがテキスト幅の 80% のみを使用するようにします。コンソール/ターミナルでcaption入力してキャプションのレイアウトを操作するその他の方法については、パッケージのドキュメントを参照してください。texdoc caption

完全なコード

\documentclass[11pt, a4paper]{report}
\usepackage{bm}
\usepackage{amsfonts, graphicx, verbatim, amsmath,amssymb, amsthm}
\usepackage{color}
\usepackage{array}
\usepackage{setspace}% if you must (for double spacing thesis)
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage{tikz}
\usepackage{parskip}
\usepackage{lipsum}

\usepackage{caption} % <================================================
\captionsetup{width=0.8\textwidth} % <==================================

\newtheorem{theorem}{Theorem}[section]
\newtheorem{example}[theorem]{Example}   


\begin{document}

\begin{example} 
Consider a random walk on the $n$-cycle. 
Let $\Omega = \mathbb{Z}_n = \lbrace 0, 1, 2, \cdots, n-1 \rbrace$ be 
the set of remainders modulo $n$. Also consider the transition matrix:
\[
  P(x,y) = 
  \begin{cases} 
    \frac{1}{2} & \text{if } y=x+1\;\; (mod\;n)\\
    \frac{1}{2} & \text{if } y=x-1\;\; (mod\;n)\\
    0           & \text{otherwise}
  \end{cases}
\]

The associated Markov chain $X_t$ is called a random walk on the 
$n$-cycle. The sates can be visualised as equally spaced nodes arranged 
in a circle (see figure~\ref{my:figure}). % <==========================
\end{example}

\begin{figure}[htbp]
  \centering
  \begin{tikzpicture}
        \foreach \i in {90,54,...,-234} {
            \draw[ultra thick] (\i:2)--({\i-36}:2);
        }
        \foreach \i in {90,18,...,-198} {
            \draw[fill=black] (\i:2) circle (1.25mm);
        }
        \foreach \i in {54,-18,...,-234} {
            \draw[fill=white] (\i:2) circle (1.25mm);
        }
        \begin{scope}[xshift=5cm]
        \foreach \i in {90,50,...,-230} {
            \draw[ultra thick] (\i:2)--({\i-40}:2);
            \draw[fill=black] (\i:2) circle (1.25mm);
        }
        \end{scope}
  \end{tikzpicture}
  \caption{Random walk on $\mathbb{Z}_10$ is periodic, since every step
    goes from an even state to an odd state, or vice-versa. Random
    walk on $\mathbb{Z}_9$ is aperiodic.}
  \label{my:figure}
\end{figure}
Text after the figure.
\end{document}

結果は次のようになります:

結果のPDF

編集:

2番目の例(コメント後、コード内の\ffigboxマークを参照)<======

\documentclass[11pt, a4paper]{report}
\usepackage{bm}
\usepackage{amsfonts, graphicx, verbatim, amsmath,amssymb, amsthm}
\usepackage{color}
\usepackage{array}
\usepackage{setspace}% if you must (for double spacing thesis)
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage{tikz}
\usepackage{parskip}
\usepackage{lipsum}

\usepackage{floatrow}

\usepackage{caption} % <================================================
\captionsetup{width=0.8\textwidth} % <==================================

\newtheorem{theorem}{Theorem}[section]
\newtheorem{example}[theorem]{Example}   


\begin{document}

\begin{example} 
Consider a random walk on the $n$-cycle. 
Let $\Omega = \mathbb{Z}_n = \lbrace 0, 1, 2, \cdots, n-1 \rbrace$ be 
the set of remainders modulo $n$. Also consider the transition matrix:
\[
  P(x,y) = 
  \begin{cases} 
    \frac{1}{2} & \text{if } y=x+1\;\; (mod\;n)\\
    \frac{1}{2} & \text{if } y=x-1\;\; (mod\;n)\\
    0           & \text{otherwise}
  \end{cases}
\]

The associated Markov chain $X_t$ is called a random walk on the 
$n$-cycle. The sates can be visualised as equally spaced nodes arranged 
in a circle (see figure~\ref{my:figure}).
\end{example}

\begin{figure}[htbp]
  \centering
  \begin{tikzpicture}
        \foreach \i in {90,54,...,-234} {
            \draw[ultra thick] (\i:2)--({\i-36}:2);
        }
        \foreach \i in {90,18,...,-198} {
            \draw[fill=black] (\i:2) circle (1.25mm);
        }
        \foreach \i in {54,-18,...,-234} {
            \draw[fill=white] (\i:2) circle (1.25mm);
        }
        \begin{scope}[xshift=5cm]
        \foreach \i in {90,50,...,-230} {
            \draw[ultra thick] (\i:2)--({\i-40}:2);
            \draw[fill=black] (\i:2) circle (1.25mm);
        }
        \end{scope}
  \end{tikzpicture}
  \caption{Random walk on $\mathbb{Z}_10$ is periodic, since every step
    goes from an even state to an odd state, or vice-versa. Random
    walk on $\mathbb{Z}_9$ is aperiodic.}
  \label{my:figure}
\end{figure}
Text after the figure.

\clearpage
\begin{example} Consider the graph $G$ following shown in figure 1.2. The transition matrix of a simple random walk $G$ is 

\begin{equation*}
P =
\begin{bmatrix}[1.25]
    0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
    \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} \\
    \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
    \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
    0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
    0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
\end{bmatrix}
\end{equation*}

\begin{figure}[htbp]
 \centering
%\ffigbox[1.1\FBwidth]{% <==============================================
 \caption{An example of a vertex set $V = \lbrace 1, 2, 3, 4, 5, 6\rbrace$ with $10$ edges.}
 \label{my:figure}%
%}% <===================================================================
 {\begin{tikzpicture}[bn/.style={circle,fill,draw,text=white,font=\sffamily,minimum
size=1mm},every node/.append style={bn}]
 \path node (1) {1} -- ++ (50:2.5) node (2) {2} -- ++(-95:1.75) node (3) {3}
 -- ++(-85:1.75) node (4) {4} -- ++(40:2.75) node (5) {5}
 -- ++ (0,1.75) node (6) {6} ;
 \draw[thick] (1)--(2)--(6)--(5)--(4)--(1)--(3)--(5)--(2)--(3)--(4);
\end{tikzpicture}}%
\end{figure}
\end{example}
\end{document}

結果として 2 番目の図/ページが得られます。

2ページ目

答え2

あなたが何を望んでいるのかよく理解しているなら、これは\ffigboxのコマンドで簡単に実現できfloatrow、キャプションの幅を完全に制御できます。

\documentclass[11pt, a4paper]{report}
\usepackage{bm}
\usepackage{graphicx, verbatim, amsmath,amssymb, amsthm}
\usepackage{color}
\usepackage{array}
\usepackage{setspace}% if you must (for double spacing thesis)
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage{tikz}
\usepackage{parskip}
\usepackage{lipsum}
    \newtheorem{theorem}{Theorem}[section]
\newtheorem{example}[theorem]{Example}
\usepackage{floatrow}

 \begin{document}

    \begin{example}
    Consider a random walk on the $n$-cycle. Let $\Omega = \mathbb{Z}_n = \lbrace 0, 1, 2, \cdots, n-1 \rbrace$ be the set of remainders modulo $n$. Also consider the transition matrix:
    \[
    P(x,y) =
    \begin{cases}
    \frac{1}{2} & \text{if } y=x+1 \pmod n\\
    \frac{1}{2} & \text{if } y=x-1\pmod n\\
    0 & \text{otherwise}
    \end{cases}
    \]

    The associated Markov chain $X_t$ is called a random walk on the $n$-cycle. The states can be visualised as equally spaced nodes arranged in a circle(see figure 1.1)
    \end{example}

 \begin{figure}[htbp]
 \centering
 \ffigbox[1.1\FBwidth]{%
 \caption{Random walk on $\mathbb{Z}_10$ is periodic, since every step
 goes from an even state to an odd state, or vice-versa. Random
 walk on $\mathbb{Z}_9$ is aperiodic.}
 \label{my:figure}}%
 {\begin{tikzpicture}
 \foreach \i in {90,54,...,-234} {
 \draw[ultra thick] (\i:2)--({\i-36}:2);
 }
 \foreach \i in {90,18,...,-198} {
 \draw[fill=black] (\i:2) circle (1.25mm);
 }
 \foreach \i in {54,-18,...,-234} {
 \draw[fill=white] (\i:2) circle (1.25mm);
 }
 \begin{scope}[xshift=5cm]
 \foreach \i in {90,50,...,-230} {
 \draw[ultra thick] (\i:2)--({\i-40}:2);
 \draw[fill=black] (\i:2) circle (1.25mm);
 }
 \end{scope}
 \end{tikzpicture}}%
 \end{figure}

\end{document} 

ここに画像の説明を入力してください

関連情報