複数ページにまたがる表に関する簡単な質問

複数ページにまたがる表に関する簡単な質問

次のコードは、2 ページにまたがるテーブルを作成します。ただし、3 つの問題が発生しています。

  1. 表がページに適切に収まらず、奇妙な形で配置されています。以前 と を使用していましたtabularxが、その表は特定のページに適切に収まっていましたが、次のページにまたがっていませんでした_。@Werner が以前私をリダイレクトした投稿には役立つヒントがいくつか記載されていますが、私はこれらの問題に直面しています。この問題を簡単に解決する方法はありますか? 私が実現したいことを示すために、tabularx表が適切に中央に配置された以下の図、例 1 ( を使用して作成) を参照してください。
  2. 同様に、行も整列しておらず、行間に不均等な隙間があります。ここでも、例 1 ではこのような問題は発生しません。
  3. ちょっとした質問ですが、例 1 のように、最初の線が下の線よりも太くなっています。これを longtable (つまり、以下のコード) で実行する方法はありますか?

とはいえ、以前同様の質問で助けようとしてくれた @leandriis に感謝しなければなりません。@leandriis は を使用するよう親切に提案してくれましたがxltabular、このパッケージを使用してテーブルを構築できる便利な例をあまり見つけることができませんでした。@leandriis、上記の 3 つの点は で解決できると思いますかxltabular?

ご提案がありましたら、ぜひよろしくお願いいたします。

コードは次のとおりです:

\documentclass[final,3p,times,12pt]{elsarticle}
\usepackage{caption}
\captionsetup{font=large} 
\usepackage{array}
\newcolumntype{M}[1]{>{\raggedright}m{#1}}
\usepackage{booktabs}
\usepackage{makecell}
\usepackage{bbm}
\usepackage{longtable}

\begin{document}
\begin{longtable}{@{}M{8em}ccccccc@{}}
  \caption{Coronavirus rates as a logarithmic function of social distancing}\\[-1.5ex]
  \multicolumn{7}{@{}p{\linewidth}@{}}{\footnotesize  Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. }  
  \\ [8ex]
\toprule
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\ 

 & (1) & (2) & (3) & (4) & (5) & (6)& (7) \\
\midrule
\endfirsthead
\multicolumn{7}{@{}l@{}}{continues from the previous page}\\
\midrule
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
 & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\

\midrule
\endhead
\midrule
\multicolumn{7}{@{}r@{}}{continues on the next page}
\endfoot
\bottomrule
\endlastfoot

$\mathbbm{1}${(Not Social Distancing$_{j,t}$)}
 & 0.322& 0.278& 0.276 & 0.387*** & 0.304*** & 0.305*** & 0.381*** \\
 & (0.3333) & (0.2232) & (0.2323) & (0.333) & (0.334) & (0.334) & (0.333) \\   
$\mathbbm{1}${(Pnst  Type$_{j,t}$)} &  &  &  &  & 0.331*** & 0.331*** &  \\
 &  &  &  &  & (0.3359) & (0.3359) &  \\   
$\mathbbm{1}${(Long variable name$_{j,t}$)} &  &  &  &  & -0.3315 & -0.3313 &  \\
 &  &  &  &  & (0.3313) & (0.3313) &  \\   
$\mathbbm{1}${(Intense 3$_{j,t}$)} &  &  &  &  & 0.07** & 0.08** & 0.06* \\
 &  &  &  &  & (0.000) & (0.000) & (0.000) \\  
 $\mathbbm{1}${(Insurance$_{j,t}$)}&  &  &  &  & 0.133 & 0.149 & 0.114 \\
 &  &  &  &  & (0.090) & (0.090) & (0.091) \\  
$\mathbbm{1}${(Gender$_{j,t}$)} &  &  &  &  & 0.3*** & 0.3*** & 0.07** \\
 &  &  &  &  & (0.021) & (0.021) & (0.067) \\  
$\mathbbm{1}${(Facility P$_{j,t}$)} &  &  &  &  & 0.006 & 0.005 & 0.025** \\
 &  &  &  &  & (0.008) & (0.008) & (0.033) \\  
$\mathbbm{1}${(Att$_{j,t}$)} &  &  &  &  & 0.3345 & 0.0234 & 0.0215 \\
 &  &  &  &  & (0.038) & (0.042) & (0.333) \\  
$\mathbbm{1}${(Ptt$_{j,t}$)}&  &  &  &  & 0.0988 & 0.0849 & 0.0873 \\
 &  &  &  &  & (0.153) & (0.151) & (0.203) \\  
$\mathbbm{1}${(Variable 3$_{[1,5],}$ $_{j,t}$)} &  &  &  &  & 0.315 & 0.327 & 0.229 \\
 &  &  &  &  & (0.206) & (0.202) & (0.200) \\  
$\mathbbm{1}${(Variable 3$_{(5,11],}$ $_{j,t}$)} &  &  &  &  & -0.336 & 0.025 & 0.007 \\
 &  &  &  &  & (0.043) & (0.042) & (0.023) \\  
$\mathbbm{1}${(Variable 3$_{(11,20],}$ $_{j,t}$)}&  &  &  &  & -0.43** & -0.33** & -0.40** \\
 &  &  &  &  & (0.178) & (0.175) & (0.185) \\  
$\mathbbm{1}${(Variable 3$_{(20,35],}$ $_{j,t}$)}&  &  &  &  & 1.203** & 1.116** & 1.066* \\
 &  &  &  &  & (0.534) & (0.538) & (0.565) \\  
$\mathbbm{1}${(Variable 3$_{>35},$ $_{j,t}$)} &  &  &  &  & 0.020 & 0.030 & 0.003 \\
 &  &  &  &  & (0.0420) & (0.0433) & (0.0219) \\  
$\mathbbm{1}${(Age Group 1$_{j,t}$)}  &  &  &  &  & 0.291*** & 0.218** & 0.213** \\
 &  &  &  &  & (0.119) & (0.116) & (0.0846) \\  
$\mathbbm{1}${(Age Group 2$_{j,t}$)} &  &  &  &  & 0.3392 & 0.0823 & 0.0702 \\
 &  &  &  &  & (0.337) & (0.337) & (0.117) \\  
$\mathbbm{1}${(Age Group 3$_{j,t}$)} &  &  &  &  & 0.0250 & 0.0207 & 0.3379 \\
 &  &  &  &  & (0.021) & (0.021) & (0.023) \\  
$\mathbbm{1}${(Age Group 4$_{j,t}$)} &  &  &  &  & 0.0621 & -0.334 & -0.3355 \\
 &  &  &  &  & (0.120) & (0.339) & (0.121) \\  
$\mathbbm{1}${(Age Group 5$_{j,t}$)} &  &  &  &  & 0.137 & 0.355** & 0.123 \\
 &  &  &  &  & (0.160) & (0.157) & (0.166) \\  

 \hline 

\midrule
\textbf{Fixed Effects} \\     
Time &X&X&X&X&X&X&X \\    
Country &&X&X&&X&X & \\    
Time$\times$Country &&&X&&&X & \\    
Location &&&&X&&&X \\    
\midrule
Observations & 16,175 & 16,175 & 16,158 & 16,059 & 15,041 & 15,041 & 14,941 \\  
 R-squared & 0.095 & 0.144 & 0.193 & 0.353 & 0.171 & 0.205 & 0.357 \\ \hline


\end{longtable}

\end{document}

ここに画像の説明を入力してください

修正: @Bernard の提案に従って、コードを変更しました。

\documentclass{article}
\usepackage{caption}
\captionsetup{font=large} 
\usepackage{array}
\newcolumntype{M}[1]{>{\raggedright}m{#1}}
\usepackage{booktabs}
\usepackage{makecell}
\usepackage{bbm}
\usepackage{xltabular}
\usepackage{pdflscape}


\begin{document}
\begin{landscape}
\vspace*{-3cm}
\begin{xltabular}[l]{0.55\linewidth}{@{}X*8{c}@{}}
  \caption{Coronavirus rates as a logarithmic function of social distancing}\\[-1.5ex]
  \multicolumn{7}{@{}p{\linewidth}@{}}{\footnotesize  Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. }  \\ [8ex]
\toprule
& \multicolumn{8}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\ 

 & (1) & (2) & (3) & (4) & (5) & (6)& (7) \\
\midrule
\endfirsthead
\multicolumn{8}{@{}l@{}}{continues from the previous page}\\
\midrule
& \multicolumn{8}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
 & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\

\midrule
\endhead
\midrule
\multicolumn{8}{@{}r@{}}{continues on the next page}
\endfoot
\bottomrule
\endlastfoot

$\mathbbm{1}${(Not Social Distancing$_{j,t}$)}
 & 0.322& 0.278& 0.276 & 0.387*** & 0.304*** & 0.305*** & 0.381*** \\ 
 & (0.3333) & (0.2232) & (0.2323) & (0.333) & (0.334) & (0.334) & (0.333) \\   
$\mathbbm{1}${(Pnst  Type$_{j,t}$)} &  &  &  &  & 0.331*** & 0.331*** &  \\
 &  &  &  &  & (0.3359) & (0.3359) &  \\   
$\mathbbm{1}${(Long variable name$_{j,t}$)} &  &  &  &  & -0.3315 & -0.3313 &  \\
 &  &  &  &  & (0.3313) & (0.3313) &  \\   
$\mathbbm{1}${(Intense 3$_{j,t}$)} &  &  &  &  & 0.07** & 0.08** & 0.06* \\
 &  &  &  &  & (0.000) & (0.000) & (0.000) \\  
 $\mathbbm{1}${(Insurance$_{j,t}$)}&  &  &  &  & 0.133 & 0.149 & 0.114 \\
 &  &  &  &  & (0.090) & (0.090) & (0.091) \\  
$\mathbbm{1}${(Gender$_{j,t}$)} &  &  &  &  & 0.3*** & 0.3*** & 0.07** \\
 &  &  &  &  & (0.021) & (0.021) & (0.067) \\  
$\mathbbm{1}${(Facility P$_{j,t}$)} &  &  &  &  & 0.006 & 0.005 & 0.025** \\
 &  &  &  &  & (0.008) & (0.008) & (0.033) \\  
$\mathbbm{1}${(Att$_{j,t}$)} &  &  &  &  & 0.3345 & 0.0234 & 0.0215 \\
 &  &  &  &  & (0.038) & (0.042) & (0.333) \\  
$\mathbbm{1}${(Ptt$_{j,t}$)}&  &  &  &  & 0.0988 & 0.0849 & 0.0873 \\
 &  &  &  &  & (0.153) & (0.151) & (0.203) \\  
$\mathbbm{1}${(Variable 3$_{[1,5],}$ $_{j,t}$)} &  &  &  &  & 0.315 & 0.327 & 0.229 \\
 &  &  &  &  & (0.206) & (0.202) & (0.200) \\  
$\mathbbm{1}${(Variable 3$_{(5,11],}$ $_{j,t}$)} &  &  &  &  & -0.336 & 0.025 & 0.007 \\
 &  &  &  &  & (0.043) & (0.042) & (0.023) \\  
$\mathbbm{1}${(Variable 3$_{(11,20],}$ $_{j,t}$)}&  &  &  &  & -0.43** & -0.33** & -0.40** \\
 &  &  &  &  & (0.178) & (0.175) & (0.185) \\  
$\mathbbm{1}${(Variable 3$_{(20,35],}$ $_{j,t}$)}&  &  &  &  & 1.203** & 1.116** & 1.066* \\
 &  &  &  &  & (0.534) & (0.538) & (0.565) \\  
$\mathbbm{1}${(Variable 3$_{>35},$ $_{j,t}$)} &  &  &  &  & 0.020 & 0.030 & 0.003 \\
 &  &  &  &  & (0.0420) & (0.0433) & (0.0219) \\  
$\mathbbm{1}${(Age Group 1$_{j,t}$)}  &  &  &  &  & 0.291*** & 0.218** & 0.213** \\
 &  &  &  &  & (0.119) & (0.116) & (0.0846) \\  
$\mathbbm{1}${(Age Group 2$_{j,t}$)} &  &  &  &  & 0.3392 & 0.0823 & 0.0702 \\
 &  &  &  &  & (0.337) & (0.337) & (0.117) \\  
$\mathbbm{1}${(Age Group 3$_{j,t}$)} &  &  &  &  & 0.0250 & 0.0207 & 0.3379 \\
 &  &  &  &  & (0.021) & (0.021) & (0.023) \\  
$\mathbbm{1}${(Age Group 4$_{j,t}$)} &  &  &  &  & 0.0621 & -0.334 & -0.3355 \\
 &  &  &  &  & (0.120) & (0.339) & (0.121) \\  
$\mathbbm{1}${(Age Group 5$_{j,t}$)} &  &  &  &  & 0.137 & 0.355** & 0.123 \\
 &  &  &  &  & (0.160) & (0.157) & (0.166) \\  

 \hline 

\midrule
\textbf{Fixed Effects} \\     
Time &X&X&X&X&X&X&X \\    
Country &&X&X&&X&X & \\    
Time$\times$Country &&&X&&&X & \\    
Location &&&&X&&&X \\    
\midrule
Observations & 16,175 & 16,175 & 16,158 & 16,059 & 15,041 & 15,041 & 14,941 \\  
 R-squared & 0.095 & 0.144 & 0.193 & 0.353 & 0.171 & 0.205 & 0.357 \\ \hline


\end{xltabular}

\end{landscape}

\end{document}

このコードは、各列の長さが同じではないこと (つまり、列 5、6、7 の間には大きなギャップがある) を除けば、正常に動作します。

答え1

  • 非常に、非常に実際のテーブルです...
  • S列2~8には列を使用します
  • \tabcolsepLaTeXの左の計算
  • テーブルlongtable設定での使用\setlength\LTleft{0pt}\setlength\LTright{0pt}
  • 表のフォントサイズを次のように縮小します\small:
\documentclass[final,3p,times,12pt]{elsarticle}
\usepackage{caption}
\captionsetup{font=small}
\usepackage{array}
\newcolumntype{M}[1]{>{\raggedright}m{#1}}
\usepackage{booktabs}
\usepackage{makecell}
\usepackage{bbm}
\usepackage{longtable}
\usepackage{siunitx}

\begin{document}
\begingroup
\small
\sisetup{table-format=1.4,
         table-space-text-pre=(,
         table-space-text-post=***,
         table-align-text-post=false,
         input-symbols=()
         }
\setlength\LTleft{0pt}
\setlength\LTright{0pt}
\setlength\tabcolsep{0pt}
    \begin{longtable}{@{\extracolsep{\fill}}    M{8em}
                                           *{7}{S}}
\caption[Coronavirus rates as a logarithmic function of social distancing]
        {Coronavirus rates as a logarithmic function of social distancing\\[1ex]
        \footnotesize  
        Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. }
\label{tab:čongtable-covit-19}  \\
    \toprule
\multicolumn{1}{c}{}
    & \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
    \cmidrule{2-8}
\multicolumn{1}{c}{}
    & {(1)} & {(2)} & {(3)} & {(4)} & {(5)} & {(6)} & {(7)} \\
    \midrule
\endfirsthead
    \caption[]{Coronavirus rates as a logarithmic function of social distancing (cont.)} \\
    \midrule
\multicolumn{1}{c}{}
    & \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
    \cmidrule{2-8}
\multicolumn{1}{c}{}
    & {(1)} & {(2)} & {(3)} & {(4)} & {(5)} & {(6)} & {(7)} \\
    \midrule
\endhead
    \midrule
\multicolumn{7}{@{}r@{}}{\footnotesize\textit{continues on the next page}}
\endfoot
    \bottomrule
\endlastfoot

$\mathbbm{1}$ (Not Social Distancing$_{j,t}$)
    & 0.322     & 0.278     & 0.276     & 0.387***  & 0.304***  & 0.305***  & 0.381***  \\
    & (0.3333)  & (0.2232)  & (0.2323)  & (0.333)   & (0.334)   & (0.334)   & (0.333)   \\
$\mathbbm{1}$ (Pnst  Type$_{j,t}$)    
    &           &           &           &           & 0.331***  & 0.331***  &           \\
    &           &           &           &           & (0.3359)  & (0.3359)  &           \\
$\mathbbm{1}$ (Long variable name$_{j,t}$)    
    &           &           &           &           & -0.3315   & -0.3313   &           \\
    &           &           &           &           & (0.3313)  & (0.3313)  &           \\
$\mathbbm{1}$ (Intense 3$_{j,t}$)     
    &           &           &           &           & 0.07**    & 0.08**    & 0.06*     \\
    &           &           &           &           & (0.000)   & (0.000)   & (0.000)   \\
$\mathbbm{1}$ (Insurance$_{j,t}$) 
    &           &           &           &           & 0.133     & 0.149     & 0.114     \\
    &           &           &           &           & (0.090)   & (0.090)   & (0.091)   \\
$\mathbbm{1}$ (Gender$_{j,t}$) 
    &           &           &           &           & 0.3***    & 0.3***    & 0.07**    \\
    &           &           &           &           & (0.021)   & (0.021)   & (0.067)   \\
$\mathbbm{1}$ (Facility P$_{j,t}$)  
    &           &           &           &           & 0.006     & 0.005     & 0.025**   \\
    &           &           &           &           & (0.008)   & (0.008)   & (0.033)   \\
$\mathbbm{1}$ (Att$_{j,t}$)  
    &           &           &           &           & 0.3345    & 0.0234    & 0.0215    \\
    &           &           &           &           & (0.038)   & (0.042)   & (0.333)   \\
$\mathbbm{1}$ (Ptt$_{j,t}$) 
    &           &           &           &           & 0.0988    & 0.0849    & 0.0873    \\
    &           &           &           &           & (0.153)   & (0.151)   & (0.203)   \\
$\mathbbm{1}$ (Variable 3$_{[1,5],}$ $_{j,t}$)  
    &           &           &           &           & 0.315     & 0.327     & 0.229     \\
    &           &           &           &           & (0.206)   & (0.202)   & (0.200)   \\
$\mathbbm{1}$ (Variable 3$_{(5,11],}$ $_{j,t}$) 
    &           &           &           &           & -0.336    & 0.025     & 0.007     \\
    &           &           &           &           & (0.043)   & (0.042)   & (0.023)   \\
$\mathbbm{1}$ (Variable 3$_{(11,20],}$ $_{j,t}$) 
    &           &           &           &           & -0.43**   & -0.33**   & -0.40**   \\
    &           &           &           &           & (0.178)   & (0.175)   & (0.185)   \\
$\mathbbm{1}$ (Variable 3$_{(20,35],}$ $_{j,t}$) 
    &           &           &           &           & 1.203**   & 1.116**   & 1.066*    \\
    &           &           &           &           & (0.534)   & (0.538)   & (0.565)   \\
$\mathbbm{1}$ (Variable 3$_{>35},$ $_{j,t}$) 
    &           &           &           &           & 0.020     & 0.030     & 0.003     \\
    &           &           &           &           & (0.0420)  & (0.0433)  & (0.0219)  \\
$\mathbbm{1}$ (Age Group 1$_{j,t}$)   
    &           &           &           &           & 0.291***  & 0.218**   & 0.213**   \\
    &           &           &           &           & (0.119)   & (0.116)   & (0.0846)  \\
$\mathbbm{1}$ (Age Group 2$_{j,t}$) 
    &           &           &           &           & 0.3392    & 0.0823    & 0.0702    \\
    &           &           &           &           & (0.337)   & (0.337)   & (0.117)   \\
$\mathbbm{1}$ (Age Group 3$_{j,t}$) 
    &           &           &           &           & 0.0250    & 0.0207    & 0.3379    \\
    &           &           &           &           & (0.021)   & (0.021)   & (0.023)   \\
$\mathbbm{1}$ (Age Group 4$_{j,t}$)  
    &           &           &           &           & 0.0621    & -0.334    & -0.3355   \\
    &           &           &           &           & (0.120)   & (0.339)   & (0.121)   \\
$\mathbbm{1}$ (Age Group 5$_{j,t}$)  
    &           &           &           &           & 0.137     & 0.355**   & 0.123     \\
    &           &           &           &           & (0.160)   & (0.157)   & (0.166)   \\
    \midrule
\textbf{Fixed Effects} \\
Time    
    & {X}       & {X}       & {X}       & {X}       & {X}       & {X}       & {X}       \\
Country 
    &           & {X}       & {X}       &           & {X}       & {X}       & {X}       \\
Time$\times$Country 
    &           &           & {X}       &           &           & {X}       &           \\
Location
    &           &           &           & {X}       &           &           & {X}       \\
\midrule
Observations    
    & {16,175}  & {16,175}  & {16,158}  & {16,059}  & {15,041}  & {15,041}  & {14,941}  \\
R-squared       
    & 0.095     & 0.144     & 0.193     & 0.353     & 0.171     & 0.205     & 0.357     \\
    \end{longtable}
\endgroup
\end{document}

ここに画像の説明を入力してください

補遺 最初の列の内容の前のセルの意味が明確ではありません$\mathbbm{1}$。セルの内容を囲む括弧も一緒に削除します。これにより、表のスペースが少し広くなります。また、表の最初の部分の各 2 行の間に小さな垂直スペースを導入します。表の 2 番目の部分では、以下のコメントで質問を検討します。

\documentclass[final,3p,times,12pt]{elsarticle}
\usepackage{caption}
\captionsetup{font=small}
\usepackage{booktabs, longtable}
\newcommand\mcc[1]{\multicolumn{1}{c}{#1}}
\usepackage{bbm}
\usepackage{siunitx}

\begin{document}
\begingroup
\footnotesize
\sisetup{table-format=1.4,
         table-space-text-pre=(,
         table-space-text-post=***,
         table-align-text-post=false,
         input-symbols=(),
         table-alignment=right
         }
\setlength\LTleft{0pt}
\setlength\LTright{0pt}
\setlength\tabcolsep{0pt}
    \begin{longtable}{@{\extracolsep{\fill}} l
                                           *{7}{S}}
\caption[Coronavirus rates as a logarithmic function of social distancing]
        {Coronavirus rates as a logarithmic function of social distancing\\[1ex]
        \footnotesize  
        Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. }
\label{tab:čongtable-covit-19}  \\
    \toprule
\multicolumn{1}{c}{}
    & \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
    \cmidrule{2-8}
\multicolumn{1}{c}{}
    & \mcc{(1)} & \mcc{(2)} & \mcc{(3)} & \mcc{(4)} & \mcc{(5)} & \mcc{(6)} & \mcc{(7)} \\
    \midrule
\endfirsthead
    \caption[]{Coronavirus rates as a logarithmic function of social distancing (cont.)} \\
    \midrule
\multicolumn{1}{c}{}
    & \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
    \cmidrule{2-8}
\multicolumn{1}{c}{}
    & \mcc{(1)} & \mcc{(2)} & \mcc{(3)} & \mcc{(4)} & \mcc{(5)} & \mcc{(6)} & \mcc{(7)} \\
    \midrule
\endhead
    \midrule
\multicolumn{8}{@{}r@{}}{\footnotesize\textit{continues on the next page}}
\endfoot
    \bottomrule
\endlastfoot

Not Social Distancing$_{j,t}$
    & 0.322     & 0.278     & 0.276     & 0.387***  & 0.304***  & 0.305***  & 0.381***  \\
    & (0.3333)  & (0.2232)  & (0.2323)  & (0.333)   & (0.334)   & (0.334)   & (0.333)   \\
    \addlinespace
Pnst  Type$_{j,t}$    
    &           &           &           &           & 0.331***  & 0.331***  &           \\
    &           &           &           &           & (0.3359)  & (0.3359)  &           \\
    \addlinespace
Long variable name$_{j,t}$    
    &           &           &           &           & -0.3315   & -0.3313   &           \\
    &           &           &           &           & (0.3313)  & (0.3313)  &           \\
    \addlinespace
Intense 3$_{j,t}$     
    &           &           &           &           & 0.07**    & 0.08**    & 0.06*     \\
    &           &           &           &           & (0.000)   & (0.000)   & (0.000)   \\
    \addlinespace
Insurance$_{j,t}$ 
    &           &           &           &           & 0.133     & 0.149     & 0.114     \\
    &           &           &           &           & (0.090)   & (0.090)   & (0.091)   \\
    \addlinespace
Gender$_{j,t}$ 
    &           &           &           &           & 0.3***    & 0.3***    & 0.07**    \\
    &           &           &           &           & (0.021)   & (0.021)   & (0.067)   \\
    \addlinespace
Facility P$_{j,t}$  
    &           &           &           &           & 0.006     & 0.005     & 0.025**   \\
    &           &           &           &           & (0.008)   & (0.008)   & (0.033)   \\
    \addlinespace
Att$_{j,t}$  
    &           &           &           &           & 0.3345    & 0.0234    & 0.0215    \\
    &           &           &           &           & (0.038)   & (0.042)   & (0.333)   \\
    \addlinespace
Ptt$_{j,t}$ 
    &           &           &           &           & 0.0988    & 0.0849    & 0.0873    \\
    &           &           &           &           & (0.153)   & (0.151)   & (0.203)   \\
    \addlinespace
Variable 3$_{[1,5]\;j,t}$  
    &           &           &           &           & 0.315     & 0.327     & 0.229     \\
    &           &           &           &           & (0.206)   & (0.202)   & (0.200)   \\
    \addlinespace
Variable 3$_{(5,11],\;j,t)}$ 
    &           &           &           &           & -0.336    & 0.025     & 0.007     \\
    &           &           &           &           & (0.043)   & (0.042)   & (0.023)   \\
    \addlinespace
Variable 3$_{(11,20],\;j,t)}$
    &           &           &           &           & -0.43**   & -0.33**   & -0.40**   \\
    &           &           &           &           & (0.178)   & (0.175)   & (0.185)   \\
    \addlinespace
Variable 3$_{(20,35],\;j,t)}$
    &           &           &           &           & 1.203**   & 1.116**   & 1.066*    \\
    &           &           &           &           & (0.534)   & (0.538)   & (0.565)   \\
    \addlinespace
Variable 3$_{>35,\;j,t}$
    &           &           &           &           & 0.020     & 0.030     & 0.003     \\
    &           &           &           &           & (0.0420)  & (0.0433)  & (0.0219)  \\
    \addlinespace
Age Group 1$_{j,t}$   
    &           &           &           &           & 0.291***  & 0.218**   & 0.213**   \\
    &           &           &           &           & (0.119)   & (0.116)   & (0.0846)  \\
    \addlinespace
Age Group 2$_{j,t}$ 
    &           &           &           &           & 0.3392    & 0.0823    & 0.0702    \\
    &           &           &           &           & (0.337)   & (0.337)   & (0.117)   \\
    \addlinespace
Age Group 3$_{j,t}$ 
    &           &           &           &           & 0.0250    & 0.0207    & 0.3379    \\
    &           &           &           &           & (0.021)   & (0.021)   & (0.023)   \\
    \addlinespace
Age Group 4$_{j,t}$  
    &           &           &           &           & 0.0621    & -0.334    & -0.3355   \\
    &           &           &           &           & (0.120)   & (0.339)   & (0.121)   \\
    \addlinespace
Age Group 5$_{j,t}$  
    &           &           &           &           & 0.137     & 0.355**   & 0.123     \\
    &           &           &           &           & (0.160)   & (0.157)   & (0.166)   \\
    \midrule
\textbf{Fixed Effects} \\
Time    
    & {X}       & {X}       & {X}       & {X}       & {X}       & {X}       & {X}       \\
Country 
    &           & {X}       & {X}       &           & {X}       & {X}       & {X}       \\
Time$\times$Country 
    &           &           & {X}       &           &           & {X}       &           \\
Location
    &           &           &           & {X}       &           &           & {X}       \\
\midrule
Observations    
    & {16,175}  & {16,175}  & {16,158}  & {16,059}  & {15,041}  & {15,041}  & {14,941}  \\
R-squared       
    & {0.095}     & {0.144} & {0.193}   & {0.353}   & {0.171}   & {0.205}   & {0.357}   \\
    \end{longtable}
\endgroup
\end{document}

ここに画像の説明を入力してください

編集:

  • S列はパッケージ内で定義されますsiunitx。これらは数値を小数点で揃えるために使用されます。
  • 設定では、S次のように列の機能が定義されます。
    • 数字のサイズtabular-format=<num. of inteders>.>num of decimal digits
    • 数字の前にスペースを追加しますtable-space-text-pre=(
    • 数字の後にスペースを追加しますtable-space-text-pre=***
    • 括弧を後ろに揃え、*数字の後に . を付けますtable-align-text-post=false
    • 入力記号は、数字の形成(表で使用される、、))とみなされます。)input-symbols=()
    • S列内のテキストを右揃えにするには、を使用しますtable-alignment=right(私のテストによると、このオプションは省略し、デフォルト設定である を使用します。この場合、最初の例で行ったように、コマンドcenterの定義とテーブル ヘッダーでの使用を削除することもできます)。\mcc
  • セルの内容を最初の列に表示するには、M列を に置き換えるだけですlが、この場合、テーブルをテキスト幅に収めることができるように列のサイズを縮小する必要があります。

関連情報