
\frametitle{Intro LDP: Brownian Motion 2}
\begin{itemize}
\item<1-> Let $(W_t)_{t\in [0,T]}$ a Brownian Motion.
\item<2-> For $\varepsilon >0$ let $\mu_\varepsilon $ the PFM of $\varepsilon W$ on $\mathcal C_0[0,T]$
\item<3-> \begin{theo}[Schiler]
$(\mu_\varepsilon )_{\varepsilon >0}$ satisfies LDP with rate function \begin{equation}I_W(\varphi )=\begin{cases}\frac{1}{2}\int_0^T \dot \varphi ^2&\varphi \in H_0^1[0,T]\\+\infty &\text{otherwise.}\end{cases}\end{equation}
\end{theo}
\end{itemize}
\end{frame}
また、定理の下の 3 番目の箇条書きが気に入りません。これを非表示にする方法はありますか? 別の解決策は、定理を \begin{itemize}\end{itemize} に配置することですが、その場合、最初のステップの後に定理が表示されなくなります (箇条書きをステップごとに表示したい)。
答え1
ここに 2 つの可能性がありますが、どちらも次の出力になります。(MWE が提供されなかったため、コードについてあまり正確ではない仮定をいくつか行う必要がありました。)
\documentclass{beamer}
\usecolortheme{orchid}
\begin{document}
\begin{frame}
\frametitle{Intro LDP: Brownian Motion 2}
\begin{itemize}
\item<1-> Let $(W_t)_{t\in [0,T]}$ a Brownian Motion.
\item<2-> For $\varepsilon >0$ let $\mu_\varepsilon $ the PFM of $\varepsilon W$ on $\mathcal C_0[0,T]$
\item[]<3-> \begin{theorem}[Schiler]
$(\mu_\varepsilon )_{\varepsilon >0}$ satisfies LDP with rate function \begin{equation}I_W(\varphi )=\begin{cases}\frac{1}{2}\int_0^T \dot \varphi ^2&\varphi \in H_0^1[0,T]\\+\infty &\text{otherwise.}\end{cases}\end{equation}
\end{theorem}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Intro LDP: Brownian Motion 2}
\begin{itemize}
\item<1-> Let $(W_t)_{t\in [0,T]}$ a Brownian Motion.
\item<2-> For $\varepsilon >0$ let $\mu_\varepsilon $ the PFM of $\varepsilon W$ on $\mathcal C_0[0,T]$\pause
\end{itemize}
\pause
\begin{theorem}[Schiler]
$(\mu_\varepsilon )_{\varepsilon >0}$ satisfies LDP with rate function \begin{equation}I_W(\varphi )=\begin{cases}\frac{1}{2}\int_0^T \dot \varphi ^2&\varphi \in H_0^1[0,T]\\+\infty &\text{otherwise.}\end{cases}\end{equation}
\end{theorem}
\end{frame}
\end{document}