
最後の項目 (および 7 番目以降に追加された項目) が前の項目と一致しない理由を知っている人はいますか? 理解できません...
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[margin=0.5in]{geometry}
\title{Unit 1 Assessment, Part 2}
\date{May 2022}
\begin{document}
\maketitle
\begin{enumerate}
\item x - intercepts of the quadratic function $f(x)=-x^{2}+7x-6$ is at: \\
$0 = -x^{2} + 7x - 6 = (x - 1)(-x + 6) \\
x = 1,x = 6$ \\
The vertical asymptotes of the reciprocal function $g(x)=\frac{1}{-x^{2}+7x-6}$: \\
$x = 1,x = 6$ \\
\\
The horizontal asymptote of the reciprocal is y = 0 since all reciprocal functions have a horizontal asymptote at y = 0. \\
\\
The interval of increase of the quadratic function is $(-\infty,3.5)$, and the interval of decrease of the quadratic function is $(3.5,\infty)$. Therefore, the interval of decrease of the reciprocal function is $(-\infty,1)\cup(1,3.5)$, and the interval of increase of the reciprocal function is $(3.5,6)\cup(6,\infty)$.\\
\\
The quadratic function has a maximum point at x = 3.5, therefore the reciprocal has a minimum point at x = 3.5. \\
\\
The positive interval of the quadratic function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$. Therefore, the positive interval of the reciprocal function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$.\\
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{unit1part2a.png}
\caption{Graph: $f(x)=-x^{2}+7x-6$ \& $g(x)=\frac{1}{-x^{2}+7x-6}$.}
\end{figure}
\item \begin{enumerate}
\item $f(x) = \frac{-2x - 5}{3x + 18}$
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
Vertical asymptotes & Horizontal asymptotes & x - intercept & y - intercept & Domain \\
\hline
x = -6 & $y = -\frac{2}{3}$ & $(-\frac{5}{2},0)$ & $(0,-\frac{5}{18})$ & $D = \{x\in\mathbb{R}|x\neq-6\}$ \\
\hline
\end{tabular}
\end{center}
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{unit1part2b.png}
\caption{Graph: $f(x) = \frac{-2x - 5}{3x + 18}$.}
\end{figure}
\item Positive interval: $(-6,-2.5)$ \\
Negative intervals: $(-\infty,-6)\cup(-2.5,\infty)$
\end{enumerate}
\item Find the real roots of the following rational equations.
\begin{enumerate}
\item $\frac{-7x}{9x + 11} - 12 = \frac{1}{x} \\
\frac{-7x}{9x + 11} = \frac{1 + 12x}{x} \\
(-7x)(x) = (9x + 11)(1 + 12x) \\
-7x^2 = 9x + 108x^2 + 11 + 132x \\
115x^2 + 141x + 11 = 0 \\
x = \frac{-141\pm\sqrt{141^2 - (4)(115)(11)}}{(2)(115)} \\
x \approx -0.08,x \approx -1.14$
\item $\frac{x - 1}{x + 2} = \frac{3x + 8}{5x - 1} \\
(x - 1)(5x - 1) = (x + 2)(3x + 8) \\
5x^2 - x - 5x + 1 = 3x^2 + 8x + 6x + 16 \\
2x^2 - 20x - 15 = 0 \\
x = \frac{-(-20)\pm\sqrt{(-20)^2 - (4)(2)(-15)}}{(2)(2)} \\
x = \frac{10\pm\sqrt{130}}{2}$
\end{enumerate}
\item $8x - 3 \leq 2x+1 \leq 17x - 8 \\
8x - 3 \leq 2x+1 \\
6x \leq 4 \\
x \leq \frac{2}{3} \\
2x+1 \leq 17x - 8 \\
9 \leq 15x \\
x \geq \frac{3}{5} \\
\frac{3}{5} \leq x \leq \frac{2}{3}$
\item $\frac{5x + 4}{x - 11} < \frac{5x - 7}{x + 13} \\
\frac{5x + 4}{x - 11} - \frac{5x - 7}{x + 13} < 0 \\
\frac{(5x + 4)(x + 13) - (5x - 7)(x - 11)}{(x - 11)(x + 13)} < 0 \\
\frac{5x^2 + 65x + 4x + 52 - 5x^2 + 55x + 7x - 77}{(x - 11)(x + 13)} < 0 \\
\frac{121x - 25}{(x - 11)(x + 13)} < 0 \\
\text{Critical numbers:} \\
121x - 25 = 0 \\
x = \frac{25}{121} \\
x - 11 = 0 \\
x = 11 \\
x + 13 = 0 \\
x = -13$ \\
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Intervals & Test value x & 121x - 25 & x - 11 & x + 13 & $\frac{121x - 25}{(x - 11)(x + 13)}$ \\
\hline
$x < -13$ & -14 & - & - & - & - \\
\hline
$-13 < x < \frac{25}{121}$ & 0 & - & - & + & + \\
\hline
$ \frac{25}{121} < x < 11$ & 10 & + & - & + & - \\
\hline
$x > 11$ & 12 & + & + & + & + \\
\hline
\end{tabular} \\
\\
Therefore, the solution is $(-\infty,-13)\cup(\frac{25}{121},11)$.
\item $(3 + x)(5 + x)(7 + x) = 693 \\
(15 + 3x + 5x + x^2)(7 + x) = 693 \\
105 + 15x + 56x + 8x^2 + 7x^2 + x^3 - 693 = 0 \\
x^3 + 15x^2 + 71x - 588 = 0 \\
\because 4^3 + 15(4)^2 + 71(4) - 588 = 0 \\
\therefore x - 4$ is a factor. \\
Devide $x^3 + 15x^2 + 71x - 588$ by x - 4: \\
$(x - 4)(x^2 + 19x + 127) = 0 \\
\because 19^2 - (4)(1)(127) < 0 \\
\therefore x^2 + 19x + 127 = 0$ has no real solution. \\
When x - 4 = 0, x = 4 \\
The value of x is 4 will produce a box with a volume of 693 cm^3.
\item Let x represent the width in meters. \\
$(3x + 1)(2x - 5)x \geq 8436 \\
6x^3 - 13x^2 - 5x - 8436 \geq 0 \\
\because 6(12)^3 - 13(12)^2 - 5(12) - 8436 = 0 \\
\therefore x - 12$ is a factor. \\
Devide $6x^3 - 13x^2 - 5x - 8436$ by x - 12: \\
$(x - 12)(6x^2 + 59x + 703) \geq 0 $\\
Critical number: \\
$\because 59^2 - (4)(6)(703) < 0 \\
\therefore 6x^2 + 59x + 703 = 0$ has no real solution. \\
When x - 12 = 0, x = 12 \\
\begin{tabular}{|c|c|c|c|c|}
\hline
Intervals & Test value x & x - 12 & 6x^2 + 59x + 703 & (x - 12)(6x^2 + 59x + 703) \\
\hline
$x < 12$ & 11 & - & + & - \\
\hline
$x > 12$ & 13 & + & + & + \\
\hline
\end{tabular} \\
$D = \{x\in\mathbb{R}|x\geq12\} \\
3(12) + 1 = 37 \\
2(12) - 5 = 19 \\$
When the length is greater or equal to 37 m, the height is greater or equal to 19 m, and the width is greater or equal to 12 m, the volume of the container is at least 8436 m^3.
\end{enumerate}
\end{document}
答え1
ドキュメントにエラーがあるため、実際にはコンパイルされません。そのため、出力 (エラーがあるため信頼できません) では、列挙の最後の項目が正しく配置されていません。
- 122行目では
cm^3
テキストモードで記述されていますが、指数は^3
数式モードで記述する必要があります。単位をタイプセットするには、次のようにするのが最も良い方法です。siunitx
cm^3
:を に置き換えるだけで済みます\unit{cm^3}
。 - 137 行目には、テキスト モードで指数付きの多項式があります。これは数式モードである必要があります。
- 147 行目では、
m^3
テキスト モードで記述したため、 の場合と同じエラーが発生しますcm^3
。
例の修正版を以下に示します。
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[margin=0.5in]{geometry}
\usepackage{siunitx}
\title{Unit 1 Assessment, Part 2}
\date{May 2022}
\begin{document}
\maketitle
\begin{enumerate}
\item x - intercepts of the quadratic function $f(x)=-x^{2}+7x-6$ is at: \\
$0 = -x^{2} + 7x - 6 = (x - 1)(-x + 6) \\
x = 1,x = 6$ \\
The vertical asymptotes of the reciprocal function $g(x)=\frac{1}{-x^{2}+7x-6}$: \\
$x = 1,x = 6$ \\
\\
The horizontal asymptote of the reciprocal is y = 0 since all reciprocal functions have a horizontal asymptote at y = 0. \\
\\
The interval of increase of the quadratic function is $(-\infty,3.5)$, and the interval of decrease of the quadratic function is $(3.5,\infty)$. Therefore, the interval of decrease of the reciprocal function is $(-\infty,1)\cup(1,3.5)$, and the interval of increase of the reciprocal function is $(3.5,6)\cup(6,\infty)$.\\
\\
The quadratic function has a maximum point at x = 3.5, therefore the reciprocal has a minimum point at x = 3.5. \\
\\
The positive interval of the quadratic function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$. Therefore, the positive interval of the reciprocal function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$.\\
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{example-image-a}
\caption{Graph: $f(x)=-x^{2}+7x-6$ \& $g(x)=\frac{1}{-x^{2}+7x-6}$.}
\end{figure}
\item \begin{enumerate}
\item $f(x) = \frac{-2x - 5}{3x + 18}$
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
Vertical asymptotes & Horizontal asymptotes & x - intercept & y - intercept & Domain \\
\hline
x = -6 & $y = -\frac{2}{3}$ & $(-\frac{5}{2},0)$ & $(0,-\frac{5}{18})$ & $D = \{x\in\mathbb{R}|x\neq-6\}$ \\
\hline
\end{tabular}
\end{center}
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{example-image-b}
\caption{Graph: $f(x) = \frac{-2x - 5}{3x + 18}$.}
\end{figure}
\item Positive interval: $(-6,-2.5)$ \\
Negative intervals: $(-\infty,-6)\cup(-2.5,\infty)$
\end{enumerate}
\item Find the real roots of the following rational equations.
\begin{enumerate}
\item $\frac{-7x}{9x + 11} - 12 = \frac{1}{x} \\
\frac{-7x}{9x + 11} = \frac{1 + 12x}{x} \\
(-7x)(x) = (9x + 11)(1 + 12x) \\
-7x^2 = 9x + 108x^2 + 11 + 132x \\
115x^2 + 141x + 11 = 0 \\
x = \frac{-141\pm\sqrt{141^2 - (4)(115)(11)}}{(2)(115)} \\
x \approx -0.08,x \approx -1.14$
\item $\frac{x - 1}{x + 2} = \frac{3x + 8}{5x - 1} \\
(x - 1)(5x - 1) = (x + 2)(3x + 8) \\
5x^2 - x - 5x + 1 = 3x^2 + 8x + 6x + 16 \\
2x^2 - 20x - 15 = 0 \\
x = \frac{-(-20)\pm\sqrt{(-20)^2 - (4)(2)(-15)}}{(2)(2)} \\
x = \frac{10\pm\sqrt{130}}{2}$
\end{enumerate}
\item $8x - 3 \leq 2x+1 \leq 17x - 8 \\
8x - 3 \leq 2x+1 \\
6x \leq 4 \\
x \leq \frac{2}{3} \\
2x+1 \leq 17x - 8 \\
9 \leq 15x \\
x \geq \frac{3}{5} \\
\frac{3}{5} \leq x \leq \frac{2}{3}$
\item $\frac{5x + 4}{x - 11} < \frac{5x - 7}{x + 13} \\
\frac{5x + 4}{x - 11} - \frac{5x - 7}{x + 13} < 0 \\
\frac{(5x + 4)(x + 13) - (5x - 7)(x - 11)}{(x - 11)(x + 13)} < 0 \\
\frac{5x^2 + 65x + 4x + 52 - 5x^2 + 55x + 7x - 77}{(x - 11)(x + 13)} < 0 \\
\frac{121x - 25}{(x - 11)(x + 13)} < 0 \\
\text{Critical numbers:} \\
121x - 25 = 0 \\
x = \frac{25}{121} \\
x - 11 = 0 \\
x = 11 \\
x + 13 = 0 \\
x = -13$ \\
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Intervals & Test value x & 121x - 25 & x - 11 & x + 13 & $\frac{121x - 25}{(x - 11)(x + 13)}$ \\
\hline
$x < -13$ & -14 & - & - & - & - \\
\hline
$-13 < x < \frac{25}{121}$ & 0 & - & - & + & + \\
\hline
$ \frac{25}{121} < x < 11$ & 10 & + & - & + & - \\
\hline
$x > 11$ & 12 & + & + & + & + \\
\hline
\end{tabular} \\
\\
Therefore, the solution is $(-\infty,-13)\cup(\frac{25}{121},11)$.
\item $(3 + x)(5 + x)(7 + x) = 693 \\
(15 + 3x + 5x + x^2)(7 + x) = 693 \\
105 + 15x + 56x + 8x^2 + 7x^2 + x^3 - 693 = 0 \\
x^3 + 15x^2 + 71x - 588 = 0 \\
\because 4^3 + 15(4)^2 + 71(4) - 588 = 0 \\
\therefore x - 4$ is a factor. \\
Devide $x^3 + 15x^2 + 71x - 588$ by x - 4: \\
$(x - 4)(x^2 + 19x + 127) = 0 \\
\because 19^2 - (4)(1)(127) < 0 \\
\therefore x^2 + 19x + 127 = 0$ has no real solution. \\
When x - 4 = 0, x = 4 \\
The value of x is 4 will produce a box with a volume of 693 \unit{cm^3}.
\item Let x represent the width in meters. \\
$(3x + 1)(2x - 5)x \geq 8436 \\
6x^3 - 13x^2 - 5x - 8436 \geq 0 \\
\because 6(12)^3 - 13(12)^2 - 5(12) - 8436 = 0 \\
\therefore x - 12$ is a factor. \\
Devide $6x^3 - 13x^2 - 5x - 8436$ by x - 12: \\
$(x - 12)(6x^2 + 59x + 703) \geq 0 $\\
Critical number: \\
$\because 59^2 - (4)(6)(703) < 0 \\
\therefore 6x^2 + 59x + 703 = 0$ has no real solution. \\
When x - 12 = 0, x = 12 \\
\begin{tabular}{|c|c|c|c|c|}
\hline
Intervals & Test value x & x - 12 & $6x^2 + 59x + 703$ & $(x - 12)(6x^2 + 59x + 703)$ \\
\hline
$x < 12$ & 11 & - & + & - \\
\hline
$x > 12$ & 13 & + & + & + \\
\hline
\end{tabular} \\
$D = \{x\in\mathbb{R}|x\geq12\} \\
3(12) + 1 = 37 \\
2(12) - 5 = 19 \\$
When the length is greater or equal to 37 m, the height is greater or equal to 19 m, and the width is greater or equal to 12 m, the volume of the container is at least 8436 \unit{m^3}.
\end{enumerate}
\end{document}
これでコンパイルは成功し、列挙の最後の項目が出力内で正しく配置されます。
また、LaTeX エラーにはならなかったとしても、ドキュメントにはまだタイプミスが残っていることを指摘しておくべきだと思います。ここに 2 つの提案があります。
x
は、たとえば列挙の項目 7 の最初の行のように、数学的な変数として意図されている場合にテキスト モードで記述されることがあります。「x」が数学的な量を表す場合は、常に数式モードで記述する必要があります。- 代数演算やその他の数学的な内容を含む行の多くは、表示数式環境 (
equation
、align
などgather
) を使用して記述すると、はるかに読みやすくなります。
答え2
問題は、7 番目の項目の m^3 によって発生します。これはエラーです。m のm^3
3 乗を求める入力は、数式モードでのみ機能します。m\textsuperscript{3}
代わりに を使用してください。