pgfplots 3D サーフェス プロットの見栄えを良くする方法

pgfplots 3D サーフェス プロットの見栄えを良くする方法

TikZ/pgf を使用して、次の 3D グラフィックを作成したいと考えています。

  • (x, y) != (0,0) かつ f(0,0)=0 のときの関数 f(x, y) = xy/(x^2 + y^2) のプロット。
  • 平面 y = x と表面との交点、つまり方程式 y = x, z = 1/2 を満たす直線で、点 (0, 0, 1/2) は省略されます。
  • 起源;そして
  • 少なくとも x 軸、y 軸、z 軸の正の部分。

Mathematica プロット

このグラフィックは Mathematica で作成され、(r,θ, φ) 球面座標 (角度は度ではなくラジアン) の視点 (2.85216, 1.62152, 0.828166) を使用しています。

私のpgfplots試みでは、以下のコードを使用して、その後に示すグラフィックを生成します。

質問pgfplots:コードを Mathematica のグラフィックに似せるように変更するにはどうすればよいでしょうか。

  1. 本質的に同じ視点(つまり同じ軸の方向)を使用します。

  2. 表面上の等高線ルールを省略します。

  3. y = x、z = 1/2 の線上の z 軸に切れ目があります。

  4. 起源についてより説得力のある点を使用する。

  5. Z 軸付近の表面の「ギザギザ」を回避します。

5. については、値を増やそうとしましたsamplesが、そうするとTeX capacity exceededエラーが発生します。

私のpgfplot出力:

pgfプロット

私のコード:

\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}

% Define a grayscale colormap
\pgfplotsset{
    colormap={grayscale}{[1pt] rgb255(0pt)=(0,0,0); rgb255(1000pt)=(255,255,255)}
}

\begin{document}
\begin{tikzpicture}
\begin{axis}[
    view={75.833}{35.3489},
    axis lines=center, 
    xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
    ticks=none, 
    domain=-1:1, y domain=-1:1,
    samples=50, % need to avoid "jaggies"
    z buffer=sort,
    clip=false,
    xmin=-1, xmax=1, ymin=-1, ymax=1, zmin=-1, zmax=1.5, 
    colormap name=grayscale, 
    xlabel style={anchor=north west}, ylabel style={anchor=north west},
    zlabel style={anchor=south},
    ]
    % Surface plot
    \addplot3[surf, shader=faceted interp, opacity=0.7] 
        {x != 0 || y != 0 ? (x*y)/(x^2 + y^2) : 0};
    % Point at the origin
    \addplot3[mark=*, mark size=1,mark options={color=black}] coordinates {(0, 0, 0)};
    % Curve of intersection of plane and surface
    \addplot3[samples=20, samples y=0, thick, color=black] 
        ({x}, {x}, {1/2});
\end{axis}
\end{tikzpicture}
\end{document}

答え1

アップデート

ここに画像の説明を入力してください

アップデート

@murray の多数のコメントに従ってコードを修正しました。表面を表現するには、定義のドメインに極座標を使用するか、通常の座標を使用するかの 2 つの方法があります。前者は原点の特異点を尊重するため、理想的に処理します。後者は関数の初期定義に従いますが、(0, 0) 付近での動作に問題があります。

後者の場合、最初の回答に対する主な変更点は次のとおりです。

  • 表面は2つに分割されます(y<0そしてy>0それぞれ)
  • 表面をよりよく理解するために境界線が追加されました
  • 軸は別々に描画されます (TikZ セグメントとして)。

さまざまなグラフィック要素の順序が重要です。

述べる 以下は、10000x10000 グリッドに基づく計算を使用して取得した画像ですmatplotlib。後者の観点では、表面は原点の周りで滑らかになることはありません。

ここに画像の説明を入力してください

ドメインに極座標を使用した描画用の新しいコード

\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\usetikzlibrary{math}
  
\pgfplotsset{compat=1.17}
\begin{document}

 \pgfplotsset{
    colormap={cmpgray}{rgb255=(221,221,221) rgb255=(54,54,54)}
} 
\xdefinecolor{axisRGB}{RGB}{128, 30, 0}  % {128, 128, 145}
\begin{tikzpicture}
  \begin{axis}[
    data cs=polar,
    axis lines=none,  % grid=major,
    view={110}{22},
    z buffer=sort,
    clip=false]
    
    % negative Ox axis 
    \draw[axisRGB, thin] (0, 0, 0) -- (-1.8, 0, 0);
    \draw[axisRGB, thin, ->] (0, 0, .02) -- (0, 0, .8)
    node[right, text=black, scale=.7] {$z$};

    \addplot3[
    surf,
    shader=interp,
    domain=0:360, domain y=.02:1.4,
    samples=50, samples y=20,
    opacity=0.95]
    {.5*sin(2*x)};
    
    % negative Oy axis 
    \draw[axisRGB, thin] (0, 0, 0) -- (0, -1.8, 0);
    % negative Oz axis 
    \draw[axisRGB, thin] (0, 0, -.025) -- (0, 0, -.8);
    
    % point at the origin
    \fill[opacity=.7] (0, 0, 0) circle (1.2pt);

    \draw[axisRGB, thin, ->] (0, .02, 0, 0) -- (0, 1.8, 0)
    node[below, text=black, scale=.7] {$y$};
    \draw[axisRGB, thin, ->] (.02, 0, 0) -- (1.8, 0, 0)
    node[below, text=black, scale=.7] {$x$};

    % Intersection curve of surface and plane z=1/2
    \draw[thin] (-1, -1, 1/2) -- (1, 1, 1/2);
  \end{axis}
\end{tikzpicture}
\end{document}

2番目の図面の新しいコード

\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.17}
\begin{document}
 \pgfplotsset{
    colormap={cmpgray}{rgb255=(221,221,221) rgb255=(54,54,54)}
} 
\xdefinecolor{axisRGB}{RGB}{128, 128, 145}

\begin{tikzpicture}
  \begin{axis}[
    view={115}{19},
    axis lines=none,  % center, 
    xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
    ticks=none, 
    z buffer=sort,
    clip=false,
    xmin=-1.3, xmax=1.3,
    ymin=-1.3, ymax=1.3,
    zmin=-1, zmax=1.3, 
    xlabel style={anchor=north west, scale=.8},
    ylabel style={anchor=north west, scale=.8},
    zlabel style={anchor=south, scale=.8},
    ]
    
    % Surface y<0
    \addplot3[
    surf,
    domain=-1:1,
    y domain=-1:-.005,
    samples=55, 
    colormap name=cmpgray,
    shader=interp,  % flat, faceted interp,
    opacity=0.75]
    {x*y/(x^2 + y^2)};

    % Surface y<0 's border
    \addplot3[%
    draw=black, ultra thin,
    domain=-1:1,
    samples y=0]
    (x, -1, {-x/(x*x +1)});
    \addplot3[%
    draw=black, ultra thin,
    domain=-1:1,
    samples y=0]
    (-1, x, {-x/(x*x +1)});

    % negative Ox and Oy axes
    \draw[axisRGB, thin] (0, 0, 0) -- (0, -1.4, 0);
    \draw[axisRGB, thin] (0, 0, 0) -- (-1.4, 0, 0);

    % Point at the origin
    \fill (0, 0, 0) circle (1.2pt);

    % positive Oz axis 
    \draw[axisRGB, thin, ->] (0, 0, .02) -- (0, 0, 1.3)
    node[right, text=black, scale=.7] {$z$};
    
    % Surface y>0
    \addplot3[
    surf,
    domain=-1:1,
    y domain=.005:1,
    samples=55, 
    colormap name=cmpgray, 
    shader=interp,  % flat, faceted interp,
    opacity=0.75]
    {x*y/(x*x + y*y)};

    % positive Oy axis 
    \draw[axisRGB, thin, ->] (0, .02, 0, 0) -- (0, 1.4, 0)
    node[below, text=black, scale=.7] {$y$};

    % negative Oz axis 
    \draw[axisRGB, thin] (0, 0, -.025) -- (0, 0, -1.3);

    % Intersection curve of surface and plane z=1/2
    \draw[thin] (-1, -1, 1/2) -- (1, 1, 1/2);

    % Surface y>0 's border
    \addplot3[%
    draw=black, very thin,
    domain=-1:1,
    samples y=0]
    (x, 1, {x/(x*x +1)});
    \addplot3[%
    draw=black, very thin,
    domain=-1:1,
    samples y=0]
    (1, x, {x/(x*x +1)});

    % positive Ox axis 
    \draw[axisRGB, thin, ->] (.02, 0, 0) -- (1.5, 0, 0)
    node[below, text=black, scale=.7] {$x$};
  \end{axis}
\end{tikzpicture}
\end{document}

古い回答

ここに画像の説明を入力してください

こんな感じです。視点と座標軸の長さ、シェーダーだけ変えました。

コード

\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{colorbrewer}

\pgfplotsset{compat=1.17}
\begin{document}

\begin{tikzpicture}
  \begin{axis}[
    view={115}{15},
    axis lines=center, 
    xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
    ticks=none, 
    domain=-1:1, y domain=-1:1,
    samples=50, % need to avoid "jaggies"
    z buffer=sort,
    clip=false,
    xmin=-1.3, xmax=1.3,
    ymin=-1.3, ymax=1.3,
    zmin=-1, zmax=1.3, 
    xlabel style={anchor=north west, scale=.8},
    ylabel style={anchor=north west, scale=.8},
    zlabel style={anchor=south, scale=.8},
    ]
    % Surface plot
    \addplot3[
    surf,
    colormap/Blues,  % cool,
    % shader=faceted interp,
    opacity=0.3] 
    {x != 0 || y != 0 ? (x*y)/(x^2 + y^2) : 0};
    
    % Point at the origin
    \addplot3[mark=*, mark size=1,mark options={color=black}]
    coordinates {(0, 0, 0)};
    
    % Curve of intersection of plane and surface
    \addplot3[samples=20, samples y=0, thick, color=black] 
    ({x}, {x}, {1/2});
  \end{axis}
\end{tikzpicture}
\end{document}

関連情報