
キャプション付きの 3 つのサブ図と図全体のキャプションを含む図があり、これらを合わせると 1 ページ以上かかります。
図が表示される特定のページのジオメトリを変更して収まるようにすることはできますが、ジオメトリの変更によって挿入された場所に改ページが作成されるため、LaTex は空白を残します。ジオメトリの変更をフロート内に配置して、LaTex がフロートのように扱い、図が表示されるページのサイズを変更するようにしようとしましたが、これではエラーが大量に発生しました。
また、図を文書内の希望する場所に正確に配置しようとしましたが、それは段落内であり、図によって段落が分割されています。図の後に段落が続く場合に視覚的に表示するために、\newline
図の前のページの最後の行と\noindent
次の行を拡張して、新しい段落がない場合に図が表示されるようにしようとしましたが、その後\newline
新しい行が開始され、図の前に完全に空白のページができてしまい、これはまったく望んでいないことです。
コマンドも使用してみました。各 をボックス内に\makebox
挿入すると機能しますが、収まるようにするために必要な上余白を減らす方法がわかりません。また、図全体のキャプションを広くする必要もありますが、 よりも広いボックスを作成すると、中央揃えではなくなり、 内に図全体を配置しようとすると、コンパイルされません。subfigure
\textwidth
makebox
\textwidth
適切に動作させるためにフロートをページよりも大きくしたり、新しい行を開始せずに行を伸縮して収まるようにする方法はありますか\newline
?
私の質問はやや不明瞭なようですので、サンプル コードを提供する必要があると思います。長くて申し訳ありませんが、コンパイルしていただければ、私の問題が何なのか理解しやすくなると思います。そうでない場合は、教えてください。もっと良い質問をします。コンパイルしたドキュメントを質問に追加する方法がわかりません。追加したいのですが。
\documentclass[twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{sectsty}
\usepackage[margin=1in]{geometry}
\usepackage{braket}
\usepackage{amsmath}
\usepackage[demo]{graphicx}
\usepackage{subcaption}
\usepackage{float}
\usepackage{tikz}
\usepackage{lipsum}
\begin{document}
\section{See last part of this section}
\lipsum[1-8]
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{And then there is some more text which I made large and bold here so you wont miss is. The important thing is that there is a paragraph right before the figure, and I don't what that to leave a pretty much empty page as it has here.}}
\onecolumn
\begin{figure}
\centering
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{\textbf{\large{All captions to this figure are really long, and at you can see they don't fit into the page.}} Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{Another really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{A this really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\onecolumn
\caption{And a caption for the whole figure. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\twocolumn
\end{figure}
\twocolumn
\section{Then I tried the geometry package, please read the last paragraph also here}
\lipsum[1-7]
\vspace{100pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{The geometry package has worked best so far.}} Then I can make the figure fit by changing the top margin. However I still have the
\newgeometry{textwidth=19.5cm,textheight=29cm,top=1.5cm, bottom=3cm}
\begin{figure*}
\centering
\includegraphics[scale=1]{x}
\caption{Let's skip the figure as you now know why it is too big.}
\end{figure*}
\restoregeometry
problem that the figure does not fit nicely within the paragraph, but a lot of white space appears. I tried to avoid this by placing the figure exactly where I wanted it within the paragraph. As you can see, the paragraph is broken by the figure, which does not seem to be allowed to float and just change the geometry of the page it happens to appear on. Do you see my problem?
\section{Then I tried to avoid the breaking of the paragraph, at least visually}
\lipsum[1-6]
\vspace{120pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
So I tried to visually make it seem as there was not break in the paragraph by using the \textbackslash newline and \textbackslash noindent commands, but as you can see, this gave me an entire blank page before the figure which I \newline
\newgeometry{textwidth=19.5cm,textheight=29cm,top=1.5cm, bottom=3cm}
\begin{figure*}
\centering
\includegraphics[scale=1]{x}
\caption{I've been using the starred figure because I want the figure to span the entire page, as I have a twocolumn environment otherwise.}
\end{figure*}
\restoregeometry
\noindent don't know how to get rid of!
I hope my question(s) are more clear now. And I am sorry for all the messy code, but I do think it is essential for understanding my problem. I hope you can help me. :)
\end{document}
答え1
太字の段落の後の空白ページは、単に で強制的に改ページしたためです\onecolumn
。どのようなレイアウトにしたいのかよくわかりませんが、強制改ページを避けて、*
フォームを使用してページ全体のフロートを許可したいとします。
\documentclass[twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{sectsty}
\usepackage[margin=1in]{geometry}
\usepackage{braket}
\usepackage{amsmath}
\usepackage[demo]{graphicx}
\usepackage{subcaption}
\usepackage{float}
\usepackage{tikz}
\usepackage{lipsum}
\newenvironment{outdent}
{\list{}{\leftmargin-1cm
\rightmargin\leftmargin}%
\item\relax}
{\endlist}
\begin{document}
\section{See last part of this section}
\lipsum[1-8]
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{And then there is some more text which I made large and bold here so you wont miss is. The important thing is that there is a paragraph right before the figure, and I don't what that to leave a pretty much empty page as it has here.}}
\begin{figure*}
\vspace*{-50pt}
\begin{outdent}
\centering
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{\textbf{\large{All captions to this figure are really long, and at you can see they don't fit into the page.}} Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{Another really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{A this really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\caption{And a caption for the whole figure. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\vspace*{-5pt}
\end{outdent}
\end{figure*}
\section{Then I tried the geometry package, please read the last paragraph also here}
\lipsum[1-7]
\vspace{100pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{The geometry package has worked best so far.}} Then I can make the figure fit by changing the top margin. However I still have the
\begin{figure*}
\begin{outdent}
\centering
\includegraphics[scale=1]{x}
\caption{Let's skip the figure as you now know why it is too big.}
\end{outdent}
\end{figure*}
problem that the figure does not fit nicely within the paragraph, but a lot of white space appears. I tried to avoid this by placing the figure exactly where I wanted it within the paragraph. As you can see, the paragraph is broken by the figure, which does not seem to be allowed to float and just change the geometry of the page it happens to appear on. Do you see my problem?
\section{Then I tried to avoid the breaking of the paragraph, at least visually}
\lipsum[1-6]
\vspace{120pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
So I tried to visually make it seem as there was not break in the paragraph by using the \textbackslash newline and \textbackslash noindent commands, but as you can see, this gave me an entire blank page before the figure which I \newline
\begin{figure*}
\centering
\includegraphics[scale=1]{x}
\caption{I've been using the starred figure because I want the figure to span the entire page, as I have a twocolumn environment otherwise.}
\end{figure*}
\noindent don't know how to get rid of!
I hope my question(s) are more clear now. And I am sorry for all the messy code, but I do think it is essential for understanding my problem. I hope you can help me. :)
\end{document}
答え2
MWE では、テキストは\lipsum[4]
1 ページ目から始まるため、OP が言及したページ下部の空白スペースは回避されます。
を使用しました。 は、\makebox[\textwidth]{}
画像の横幅を余分に広げて、水平方向の余白を超えています。 を使用しました。 は\smash
、画像の縦方向の範囲を縮小しています。 しかし、これだけではキャプションがページの中央に縦方向に残ってしまうため、\rule
画像に を追加しminipage
てキャプションを下方に押し下げる必要がありました。 ルールの範囲は より小さく\textheight
、キャプションの最終的な位置を決定します。
\documentclass[11pt]{report}
\usepackage[demo]{graphicx}
\usepackage{lipsum}
\begin{document}
\lipsum[1-3]
\begin{figure}[p]
\begin{minipage}{\textwidth}
\rule{0pt}{7.5in}%
\smash{\makebox[\textwidth]{\includegraphics[width=7in,height=8.5in]{x}}}
\end{minipage}
\caption{this is my figure caption}
\end{figure}
\lipsum[4-9]
\end{document}