3D-Achse und Polyeder mit Liniensegment zum Ursprung

3D-Achse und Polyeder mit Liniensegment zum Ursprung

Ich möchte ein 3D-Diagramm erstellen, das die 3D-Achse und ein konvexes Polyeder enthält, oder besser ein Dodekaeder

Bildschirmfoto

auf der positiven Seite, bei der einer der Randpunkte oben mit \hat{x}„ausgewählt“ oder „ausgewählt“ beschriftet ist, und zeichnen Sie ein Liniensegment von diesem beschrifteten Punkt zum Ursprung. Markieren und beschriften Sie dann auch die Stelle, an der sich dieses Liniensegment mit der konvexen Hülle des Dodekaeders schneidet. Wäre das mit TikZ ein Albtraum?

übrigens, was ist der beste Weg, TikZ ein für alle Mal zu lernen? Gibt es gute Bücher? Ich konsumiere TikZ immer auf die eine oder andere Weise :(

UPDATE: Eigentlich brauche ich mehrere Diagramme zu dieser Idee, um das Verhalten eines Algorithmus, den ich dokumentieren muss, im Detail zu veranschaulichen. Ich hoffe, dass ich, indem ich sehe, wie es in diesem Fall gemacht wird, in der Lage sein werde, zu verallgemeinern und die anderen selbst zu machen ... obwohl ich weiß, wie schwierig es ist, TikZ ... :(

Antwort1

\documentclass{article}
\usepackage[dvipsnames]{pstricks}
\usepackage{pst-solides3d}
\begin{document}

\begin{pspicture}[solidmemory,fontsize=20](-4,-4)(4,4)
\psset{Decran=30,viewpoint=20 40 30 rtp2xyz, lightsrc=viewpoint}
\psSolid[object=dodecahedron,a=2.5,action=draw*,name=my_dodecahedron,
         fillcolor=green!50!white]
\psSolid[object=point,definition=solidgetsommet,
  args=my_dodecahedron 0,linecolor=blue,text=A,pos=uc,name=A]
\psSolid[object=point,definition=solidgetsommet,
  args=my_dodecahedron 4,linecolor=blue,text=B,pos=uc,name=B]
\psSolid[object=line,args=A B,linecolor=blue]
\psSolid[object=vecteur,args=A,linecolor=blue]
\psSolid[object=vecteur,args=B,linecolor=blue]
\axesIIID(2.5,2.5,2.5)(3.5,3,3)
\end{pspicture}
%
\begin{pspicture}[solidmemory,fontsize=20](-4,-4)(4,4)
\psset{Decran=30,viewpoint=20 40 35 rtp2xyz, lightsrc=viewpoint}
\psSolid[object=dodecahedron,a=2.5,action=draw*,RotX=22.5,RotY=22.5,
  fillcolor=red!50!white,name=my_dodecahedron,action=draw**,
%  numfaces=all,num=all,
]
\psSolid[object=point,definition=solidcentreface,
   args=my_dodecahedron 2,linecolor=white,text=Centre face 2,pos=uc]
\psSolid[object=point,definition=solidgetsommet,
  args=my_dodecahedron 0,linecolor=white,text=A,pos=cl,name=A]
\psSolid[object=point,definition=solidgetsommet,
  args=my_dodecahedron 4,linecolor=white,text=B,pos=cl,name=B]
\psSolid[object=line,args=A B,linecolor=white]
\end{pspicture}

\end{document}

Bildbeschreibung hier eingeben

Antwort2

Hier ist einTikZAusgangspunkt, alle Eckpunkte, Kanten und Flächen sind unabhängig voneinander definiert, sodass Sie sie für weitere Zauberei verwenden können:

Code

\documentclass[parskip]{scrartcl}
\usepackage[margin=15mm]{geometry}
\usepackage{tikz}

\begin{document}

% golden ratio and inverse golden ratio
\pgfmathsetmacro{\gr}{(1+sqrt(5))/2}
\pgfmathsetmacro{\igr}{2/(1+sqrt(5))}

%choose axis angles
\newcommand{\xangle}{0}
\newcommand{\yangle}{90}
\newcommand{\zangle}{225}

%choose axis lengths
\newcommand{\xlength}{1}
\newcommand{\ylength}{1}
\newcommand{\zlength}{0.5}

\pgfmathsetmacro{\xx}{\xlength*cos(\xangle)}
\pgfmathsetmacro{\xy}{\xlength*sin(\xangle)}
\pgfmathsetmacro{\yx}{\ylength*cos(\yangle)}
\pgfmathsetmacro{\yy}{\ylength*sin(\yangle)}
\pgfmathsetmacro{\zx}{\zlength*cos(\zangle)}
\pgfmathsetmacro{\zy}{\zlength*sin(\zangle)}

\begin{tikzpicture}
[   x={(\xx cm,\xy cm)},
    y={(\yx cm,\yy cm)},
    z={(\zx cm,\zy cm)},
    scale=2,
    every path/.style={thick}
]

% coordinates of the vertices (see wikipedia page)
    % vertices of inscribed cube
    \coordinate (pd1) at (-1,-1,-1);
    \coordinate (pd2) at (-1,-1,1);
    \coordinate (pd3) at (-1,1,-1);
    \coordinate (pd4) at (-1,1,1);
    \coordinate (pd5) at (1,-1,-1);
    \coordinate (pd6) at (1,-1,1);
    \coordinate (pd7) at (1,1,-1);
    \coordinate (pd8) at (1,1,1);
    % "front/back" "outside of cube" points
    \coordinate (pd9) at (0,-\igr,-\gr);
    \coordinate (pd10) at (0,-\igr,\gr);
    \coordinate (pd11) at (0,\igr,-\gr);
    \coordinate (pd12) at (0,\igr,\gr);
    % "top/bottom" "outside of cube" points
    \coordinate (pd13) at (-\igr,-\gr,0);
    \coordinate (pd14) at (-\igr,\gr,0);
    \coordinate (pd15) at (\igr,-\gr,0);
    \coordinate (pd16) at (\igr,\gr,0);
    % "left/right" "outside of cube" points
    \coordinate (pd17) at (-\gr,0,-\igr);
    \coordinate (pd18) at (-\gr,0,\igr);
    \coordinate (pd19) at (\gr,0,-\igr);
    \coordinate (pd20) at (\gr,0,\igr);

% black background rectangle for contrast (better option: backgrounds library)  
    \fill (-2.2,-2) rectangle (2.2,2);

% mark vertices 
    \foreach \x in {1,...,20}
    {   \fill[white] (pd\x) circle (0.03) node[above right] {\tiny\x};
    }

% draw inscribed cube
\draw[gray, densely dotted] (pd8) -- (pd7) -- (pd3) -- (pd4) -- cycle;
\draw[gray, densely dotted] (pd8) -- (pd6) -- (pd5) -- (pd7) -- cycle;
\draw[gray, densely dotted] (pd5) -- (pd6) -- (pd2) -- (pd1) -- cycle;
\draw[gray, densely dotted] (pd1) -- (pd2) -- (pd4) -- (pd3) -- cycle;

% faces; "back" ones gray, "front" ones red
    \fill[gray,fill opacity=0.2] (pd11) -- (pd9) -- (pd5) -- (pd19) -- (pd7) -- cycle;
    \fill[gray,fill opacity=0.2] (pd11) -- (pd9) -- (pd1) -- (pd17) -- (pd3) -- cycle;
    \fill[gray,fill opacity=0.2] (pd11) -- (pd7) -- (pd16) -- (pd14) -- (pd3) -- cycle;
    \fill[gray,fill opacity=0.2] (pd3) -- (pd14) -- (pd4) -- (pd18) -- (pd17) -- cycle;
    \fill[gray,fill opacity=0.2] (pd1) -- (pd9) -- (pd5) -- (pd15) -- (pd13) -- cycle;
    \fill[gray,fill opacity=0.2] (pd1) -- (pd13) -- (pd2) -- (pd18) -- (pd17) -- cycle;
    \fill[red,fill opacity=0.2] (pd14) -- (pd16) -- (pd8) -- (pd12) -- (pd4) -- cycle;
    \fill[red,fill opacity=0.2] (pd8) -- (pd16) -- (pd7) -- (pd19) -- (pd20) -- cycle;
    \fill[red,fill opacity=0.2] (pd20) -- (pd19) -- (pd5) -- (pd15) -- (pd6) -- cycle;
    \fill[red,fill opacity=0.2] (pd12) -- (pd8) -- (pd20) -- (pd6) -- (pd10) -- cycle;
    \fill[red,fill opacity=0.2] (pd10) -- (pd6) -- (pd15) -- (pd13) -- (pd2) -- cycle;
    \fill[red,fill opacity=0.2] (pd12) -- (pd10) -- (pd2) -- (pd18) -- (pd4) -- cycle;

% edges on "back"    face of inscribes cube
    \draw[red] (pd9) -- (pd11);
    \draw[red] (pd11) -- (pd3);
    \draw[red] (pd11) -- (pd7);
    \draw[red] (pd9) -- (pd1);
    \draw[red] (pd9) -- (pd5);
% edges on "top"     face of inscribes cube
    \draw[blue] (pd14) -- (pd16);
    \draw[blue] (pd16) -- (pd8);
    \draw[blue] (pd16) -- (pd7);
    \draw[blue] (pd14) -- (pd3);
    \draw[blue] (pd14) -- (pd4);
% edges on "left"    face of inscribes cube
    \draw[green] (pd17) -- (pd18);
    \draw[green] (pd17) -- (pd3);
    \draw[green] (pd17) -- (pd1);
    \draw[green] (pd18) -- (pd2);
    \draw[green] (pd18) -- (pd4);
% edges on "bottom"  face of inscribes cube
    \draw[yellow] (pd13) -- (pd15);
    \draw[yellow] (pd13) -- (pd1);
    \draw[yellow] (pd13) -- (pd2);
    \draw[yellow] (pd15) -- (pd5);
    \draw[yellow] (pd15) -- (pd6);
% edges on "front"   face of inscribes cube
    \draw[violet] (pd10) -- (pd12);
    \draw[violet] (pd12) -- (pd4);
    \draw[violet] (pd12) -- (pd8);
    \draw[violet] (pd10) -- (pd2);
    \draw[violet] (pd10) -- (pd6);
% edges on "right"   face of inscribes cube 
    \draw[orange] (pd20) -- (pd19); 
    \draw[orange] (pd19) -- (pd7);
    \draw[orange] (pd19) -- (pd5);
    \draw[orange] (pd20) -- (pd8);
    \draw[orange] (pd20) -- (pd6);
\end{tikzpicture}

\end{document}

Ergebnis

Bildbeschreibung hier eingeben


Bearbeitung 1:Dabei treten mehrere Probleme auf.TikZ, da auch 3D-Punkte intern als 2D-Punkte gespeichert werden. Außerdem kann man nicht automatisch versteckte Linien finden, man muss das also selbst machen. Bei dem von dir beschriebenen Problem wäre es schwierig zu wissen, durch welche der 12 Flächen die Verbindungslinie geht, also habe ich eine gewählt, bei der das leicht zu erkennen ist. Das Makro, das ich zum Ermitteln der Schnittpunkte geschrieben habe, funktioniert nur, wenn deine Linie durch den Ursprung geht.

Code

\documentclass[tikz]{standalone}
\usepackage{xifthen}

\begin{document}

%command to find intersection of plane through abc and line p (through origin)
\newcommand{\planelineinter}[5]% a, b, c, p as {a_x,a_y,a_z}, coordinate name
{   \foreach \a [count=\k] in {#1}
    { \ifthenelse{\k=1}{\xdef\tempxa{\a}}
        \ifthenelse{\k=2}{\xdef\tempya{\a}}
        \ifthenelse{\k=3}{\xdef\tempza{\a}}
    }
    \foreach \b [count=\k] in {#2}
    { \ifthenelse{\k=1}{\xdef\tempxb{\b}}
        \ifthenelse{\k=2}{\xdef\tempyb{\b}}
        \ifthenelse{\k=3}{\xdef\tempzb{\b}}
    }
    \foreach \c [count=\k] in {#3}
    { \ifthenelse{\k=1}{\xdef\tempxc{\c}}
        \ifthenelse{\k=2}{\xdef\tempyc{\c}}
        \ifthenelse{\k=3}{\xdef\tempzc{\c}}
    }
    \foreach \p [count=\k] in {#4}
    { \ifthenelse{\k=1}{\xdef\tempxp{\p}}
        \ifthenelse{\k=2}{\xdef\tempyp{\p}}
        \ifthenelse{\k=3}{\xdef\tempzp{\p}}
    }
    \pgfmathsetmacro{\abx}{\tempxb-\tempxa}
    \pgfmathsetmacro{\aby}{\tempyb-\tempya}
    \pgfmathsetmacro{\abz}{\tempzb-\tempza}
    \pgfmathsetmacro{\acx}{\tempxc-\tempxa}
    \pgfmathsetmacro{\acy}{\tempyc-\tempya}
    \pgfmathsetmacro{\acz}{\tempzc-\tempza}
    \pgfmathsetmacro{\nx}{\aby*\acz-\abz*\acy}
    \pgfmathsetmacro{\ny}{\abz*\acx-\abx*\acz}
    \pgfmathsetmacro{\nz}{\abx*\acy-\aby*\acx}
    \pgfmathsetmacro{\d}{(\nx+\ny+\nz)/(\nx*\tempxp+\ny*\tempyp+\nz*\tempzp)}
    \path (0,0,0) -- (#4) coordinate[pos=\d] (#5);
}

% golden ratio and inverse golden ratio
\pgfmathsetmacro{\gr}{(1+sqrt(5))/2}
\pgfmathsetmacro{\igr}{2/(1+sqrt(5))}

%choose axis angles
\newcommand{\xangle}{0}
\newcommand{\yangle}{90}
\newcommand{\zangle}{225}

%choose axis lengths
\newcommand{\xlength}{1}
\newcommand{\ylength}{1}
\newcommand{\zlength}{0.5}

\pgfmathsetmacro{\xx}{\xlength*cos(\xangle)}
\pgfmathsetmacro{\xy}{\xlength*sin(\xangle)}
\pgfmathsetmacro{\yx}{\ylength*cos(\yangle)}
\pgfmathsetmacro{\yy}{\ylength*sin(\yangle)}
\pgfmathsetmacro{\zx}{\zlength*cos(\zangle)}
\pgfmathsetmacro{\zy}{\zlength*sin(\zangle)}

\begin{tikzpicture}
[   x={(\xx cm,\xy cm)},
  y={(\yx cm,\yy cm)},
  z={(\zx cm,\zy cm)},
  scale=2,
  every path/.style={thick}
]

% coordinates of the vertices (see wikipedia page)
    \node[below left] at (0,0,0) {$\vec{0}$};
    \fill (0,0,0) circle (0.03);
    % vertices of inscribed cube
    \coordinate (pd1) at (-1,-1,-1);
    \coordinate (pd2) at (-1,-1,1);
    \coordinate (pd3) at (-1,1,-1);
    \coordinate (pd4) at (-1,1,1);
    \coordinate (pd5) at (1,-1,-1);
    \coordinate (pd6) at (1,-1,1);
    \coordinate (pd7) at (1,1,-1);
    \coordinate (pd8) at (1,1,1);
    % "front/back" "outside of cube" points
    \coordinate (pd9) at (0,-\igr,-\gr);
    \coordinate (pd10) at (0,-\igr,\gr);
    \coordinate (pd11) at (0,\igr,-\gr);
    \coordinate (pd12) at (0,\igr,\gr);
    % "top/bottom" "outside of cube" points
    \coordinate (pd13) at (-\igr,-\gr,0);
    \coordinate (pd14) at (-\igr,\gr,0);
    \coordinate (pd15) at (\igr,-\gr,0);
    \coordinate (pd16) at (\igr,\gr,0);
    % "left/right" "outside of cube" points
    \coordinate (pd17) at (-\gr,0,-\igr);
    \coordinate (pd18) at (-\gr,0,\igr);
    \coordinate (pd19) at (\gr,0,-\igr);
    \coordinate (pd20) at (\gr,0,\igr);

% ========== the point of interest, part 1
    \coordinate (x) at (4,3,0);
    \planelineinter{1,1,-1}{1,1,1}{\igr,\gr,0}{4,3,0}{interpoint}
    \draw[very thick,red,densely dashed] (0,0) -- (interpoint);

% faces; "back" ones gray, "front" ones red
    \fill[gray,fill opacity=0.4] (pd11) -- (pd9) -- (pd5) -- (pd19) -- (pd7) -- cycle;
    \fill[gray,fill opacity=0.4] (pd11) -- (pd9) -- (pd1) -- (pd17) -- (pd3) -- cycle;
    \fill[gray,fill opacity=0.4] (pd11) -- (pd7) -- (pd16) -- (pd14) -- (pd3) -- cycle;
    \fill[gray,fill opacity=0.4] (pd3) -- (pd14) -- (pd4) -- (pd18) -- (pd17) -- cycle;
    \fill[gray,fill opacity=0.4] (pd1) -- (pd9) -- (pd5) -- (pd15) -- (pd13) -- cycle;
    \fill[gray,fill opacity=0.4] (pd1) -- (pd13) -- (pd2) -- (pd18) -- (pd17) -- cycle;

    \fill[gray,fill opacity=0.4] (pd14) -- (pd16) -- (pd8) -- (pd12) -- (pd4) -- cycle;
    \fill[lime,fill opacity=0.4] (pd8) -- (pd16) -- (pd7) -- (pd19) -- (pd20) -- cycle;
    \fill[gray,fill opacity=0.4] (pd20) -- (pd19) -- (pd5) -- (pd15) -- (pd6) -- cycle;
    \fill[gray,fill opacity=0.4] (pd12) -- (pd8) -- (pd20) -- (pd6) -- (pd10) -- cycle;
    \fill[gray,fill opacity=0.4] (pd10) -- (pd6) -- (pd15) -- (pd13) -- (pd2) -- cycle;
    \fill[gray,fill opacity=0.4] (pd12) -- (pd10) -- (pd2) -- (pd18) -- (pd4) -- cycle;

% edges on "back"    face of inscribes cube; red
    \draw[dashed] (pd9) -- (pd11);
    \draw[dashed] (pd11) -- (pd3);
    \draw[dashed] (pd11) -- (pd7);
    \draw[dashed] (pd9) -- (pd1);
    \draw[dashed] (pd9) -- (pd5);
% edges on "top"     face of inscribes cube
    \draw[] (pd14) -- (pd16);
    \draw[] (pd16) -- (pd8);
    \draw[] (pd16) -- (pd7);
    \draw[dashed] (pd14) -- (pd3);
    \draw[] (pd14) -- (pd4);
% edges on "left"    face of inscribes cube
    \draw[dashed] (pd17) -- (pd18);
    \draw[dashed] (pd17) -- (pd3);
    \draw[dashed] (pd17) -- (pd1);
    \draw[] (pd18) -- (pd2);
    \draw[] (pd18) -- (pd4);
% edges on "bottom"  face of inscribes cube
    \draw[] (pd13) -- (pd15);
    \draw[dashed] (pd13) -- (pd1);
    \draw[] (pd13) -- (pd2);
    \draw[] (pd15) -- (pd5);
    \draw[] (pd15) -- (pd6);
% edges on "front"   face of inscribes cube
    \draw[] (pd10) -- (pd12);
    \draw[] (pd12) -- (pd4);
    \draw[] (pd12) -- (pd8);
    \draw[] (pd10) -- (pd2);
    \draw[] (pd10) -- (pd6);
% edges on "right"   face of inscribes cube 
    \draw[] (pd20) -- (pd19);   
    \draw[] (pd19) -- (pd7);
    \draw[] (pd19) -- (pd5);
    \draw[] (pd20) -- (pd8);
    \draw[] (pd20) -- (pd6);    

% ========== the point of interest, part 2
    \draw[very thick,red] (interpoint) -- (x);
    \fill[blue] (x) circle (0.03) node[above] {$\mathbf{\hat{x}}$};
    \fill[blue] (interpoint) circle (0.03) node[above,fill,white,rounded corners=1mm,fill opacity=0.5,text opacity=1,text=black,above left=1mm] {intersection point};
\end{tikzpicture}

\end{document}

Ausgabe

Bildbeschreibung hier eingeben

verwandte Informationen