Ich versuche, einen komplexen Bereich auszufüllen, der durch sechs Schnittpunkte von 4 Hyperbeln definiert ist. Wie Sie hier sehen können:
Insbesondere möchte ich den Bereich füllen, der durch die 6 Punkte begrenzt und definiert ist. Ich kenne die genauen Koordinaten der p_i
Punkte und die genauen Gleichungen jeder Hyperbel. Wie kann ich sie verknüpfen und den Bereich füllen?
Der Vollständigkeit halber hier der Code, den ich bisher habe:
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{document}
\def\bndmax{5}
\def\bndmin{0.2}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\draw (-3,-3) grid (3,3);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\x{-\gR*\xS}
\pgfmathsetmacro\y{1/(\gR*\xS)}
\coordinate (p1) at (\x,\y);
\pgfmathsetmacro\x{-(1/\gR)*\xS}
\pgfmathsetmacro\y{\gR*(1/\xS)}
\coordinate (p2) at (\x,\y);
\pgfmathsetmacro\x{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\y{\gR*\gR/\xS)}
\coordinate (p3) at (\x,\y);
\pgfmathsetmacro\x{(1/\gR)*\xS}
\pgfmathsetmacro\y{-\gR*(1/\xS)}
\coordinate (p4) at (\x,\y);
\pgfmathsetmacro\x{\gR*\xS}
\pgfmathsetmacro\y{-1/(\gR*\xS)}
\coordinate (p5) at (\x,\y);
\pgfmathsetmacro\x{\gR*\gR*\xS}
\pgfmathsetmacro\y{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\x,\y);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\end{tikzpicture}
\end{document}
Antwort1
Hier eine nicht ganz automatische Lösung. Sie funktioniert nicht, wenn ich \xs
in der Definition der Funktion in verwende plot
, also musste ich dies manuell (und damit statisch) einfügen. Für die jeweiligen Domänen habe ich deine wiederverwendeten Hilfemakros von \x
und \y
in \xa
und \ya
bis in \xa
und umbenannt \xf
, damit sie später verwendet werden können. Dann ist es nur noch das Aneinanderreihen einer Menge von plot
und --
Befehlen. Das --
ist wichtig, sonst wird jedes einzelne Plot geschlossen, was eine komische Rautenform ergibt.
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{document}
\def\bndmax{5}
\def\bndmin{0.2}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\draw (-3,-3) grid (3,3);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\xa{-\gR*\xS}
\pgfmathsetmacro\ya{1/(\gR*\xS)}
\coordinate (p1) at (\xa,\ya);
\pgfmathsetmacro\xb{-(1/\gR)*\xS}
\pgfmathsetmacro\yb{\gR*(1/\xS)}
\coordinate (p2) at (\xb,\yb);
\pgfmathsetmacro\xc{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\yc{\gR*\gR/\xS)}
\coordinate (p3) at (\xc,\yc);
\pgfmathsetmacro\xd{(1/\gR)*\xS}
\pgfmathsetmacro\yd{-\gR*(1/\xS)}
\coordinate (p4) at (\xd,\yd);
\pgfmathsetmacro\xe{\gR*\xS}
\pgfmathsetmacro\ye{-1/(\gR*\xS)}
\coordinate (p5) at (\xe,\ye);
\pgfmathsetmacro\xf{\gR*\gR*\xS}
\pgfmathsetmacro\yf{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\xf,\yf);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\clip (p1) plot[domain=\xa:\xb] (\x,{-1/\x}) -- plot[domain=\xb:\xc] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xc:\xf] (\x,{1/\x}) -- plot[domain=\xf:\xe] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xe:\xd] (\x,{-1/\x}) -- plot[domain=\xd:\xa] (\x,{1/(\x-1.5)+1/1.5}) --cycle;
\fill[opacity=0.3,blue!30!cyan] (\xa,\yd) rectangle (\xf,\yc);
\end{tikzpicture}
\end{document}
Bearbeitung 1:Nur einige kleinere Verbesserungen:
- das Raster wurde auf 10x10 erweitert
- Das Gesamt-Clipping wurde verbessert
- Die Grenzen werden so festgelegt, dass alle Funktionen über die gesamte Domäne gezeichnet werden
- Legen Sie die blaue Füllung auf eine Hintergrundebene, so dass sie die Funktionen oder Punkte nicht teilweise überlappt
.
\documentclass[tikz]{standalone}
\usetikzlibrary{calc}
\pgfdeclarelayer{background layer}
\pgfsetlayers{background layer,main}
\begin{document}
\def\bndmax{6.5}
\def\bndmin{0.15}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\clip (-5cm-0.2pt,-5cm-0.2pt) rectangle (5cm+0.pt,5cm+0.2pt);
\draw (-5,-5) grid (5,5);
\draw[thick] (-5,0) -- (5,0);
\draw[thick] (0,-5) -- (0,5);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\xa{-\gR*\xS}
\pgfmathsetmacro\ya{1/(\gR*\xS)}
\coordinate (p1) at (\xa,\ya);
\pgfmathsetmacro\xb{-(1/\gR)*\xS}
\pgfmathsetmacro\yb{\gR*(1/\xS)}
\coordinate (p2) at (\xb,\yb);
\pgfmathsetmacro\xc{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\yc{\gR*\gR/\xS)}
\coordinate (p3) at (\xc,\yc);
\pgfmathsetmacro\xd{(1/\gR)*\xS}
\pgfmathsetmacro\yd{-\gR*(1/\xS)}
\coordinate (p4) at (\xd,\yd);
\pgfmathsetmacro\xe{\gR*\xS}
\pgfmathsetmacro\ye{-1/(\gR*\xS)}
\coordinate (p5) at (\xe,\ye);
\pgfmathsetmacro\xf{\gR*\gR*\xS}
\pgfmathsetmacro\yf{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\xf,\yf);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\begin{pgfonlayer}{background layer}
\clip (p1) plot[domain=\xa:\xb] (\x,{-1/\x}) -- plot[domain=\xb:\xc] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xc:\xf] (\x,{1/\x}) -- plot[domain=\xf:\xe] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xe:\xd] (\x,{-1/\x}) -- plot[domain=\xd:\xa] (\x,{1/(\x-1.5)+1/1.5}) --cycle;
\fill[opacity=0.3,blue!30!cyan] (\xa,\yd) rectangle (\xf,\yc);
\end{pgfonlayer}
\end{tikzpicture}
\end{document}
Antwort2
Solange Sie die Koordinaten aller Scheitelpunkte Ihrer komplexen Region haben, können Sie diese mit einem einzigen Pfad zeichnen:
\documentclass{standalone}
\usepackage{tikz}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{document}
\begin{tikzpicture}
\draw[samples=30,line join=round,fill=lime]
plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x,-{1/\x})
-- plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x+\xS,{-(1/\x)+(1/\xS)})
-- plot [domain=1/(\gR*\gR)*\xS:\gR*\gR*\xS] (\x,{1/\x})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x+\xS,{-1/\x+1/\xS})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x,{-1/\x})
-- plot [domain=-1/(\gR*\gR)*\xS:-\gR*\gR*\xS] (\x+\xS,{1/\x+1/\xS})
-- cycle;
\end{tikzpicture}
\end{document}
Sie können sogar den Parameter `\xS' variieren:
\begin{tikzpicture}
\foreach \gray in {10,20,...,90}{
\pgfmathsetmacro{\xS}{.5+\gray/100*1.5}
\draw[samples=30,line join=round,draw=black!\gray!yellow]
plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x,-{1/\x})
-- plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x+\xS,{-(1/\x)+(1/\xS)})
-- plot [domain=1/(\gR*\gR)*\xS:\gR*\gR*\xS] (\x,{1/\x})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x+\xS,{-1/\x+1/\xS})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x,{-1/\x})
-- plot [domain=-1/(\gR*\gR)*\xS:-\gR*\gR*\xS] (\x+\xS,{1/\x+1/\xS})
-- cycle;
}
\end{tikzpicture}
Wenn Sie die Koordinaten jedoch nicht kennen, gibt es immer eine Lösung mit zwei Clip-Pfaden mit verketteten Plots (funktioniert, wenn \bndmax
sie \bndmin
richtig ausgewählt sind):
\documentclass{standalone}
\usepackage{tikz}
\def\bndmax{5}
\def\bndmin{0.2}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{document}
\begin{tikzpicture}
\draw (-\bndmax,-1/\bndmin) grid (\bndmax,1/\bndmin);
\path[clip] plot [samples=200,domain=-\bndmax:-\bndmin] (-\x,{1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (\x,{1/\x})
-- plot [samples=200,domain=-\bndmax:-\bndmin] (\x,{-1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (-\x,{-1/\x})
-- cycle;
\fill[green,fill opacity=.3]
(-\bndmax,-1/\bndmin) rectangle (\bndmax,1/\bndmin);
\begin{scope}[shift={(\xS,1/\xS)}]
\path[clip] plot [samples=200,domain=-\bndmax:-\bndmin] (-\x,{1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (\x,{1/\x})
-- plot [samples=200,domain=-\bndmax:-\bndmin] (\x,{-1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (-\x,{-1/\x})
-- cycle;
\fill[red,fill opacity=.7]
(-\bndmax,-1/\bndmin) rectangle (\bndmax,1/\bndmin);
\end{scope}
\end{tikzpicture}
\end{document}
Antwort3
Sie können hierfür PGFPlots verwenden.
Ich habe zwei Funktionen definiert,
declare function={f(\x)=min(1/\x,-1/\x);},
declare function={g(\x)=max(1/\x,-1/\x);}
die den negativen (positiven) Teilen der Hyperbeln entsprechen, und verwendete diese dann, um zwei neue Funktionen zu definieren
declare function={h(\x)=max(f(x),f(x-1.5)+1/1.5);},
declare function={i(\x)=min(g(x),g(x-1.5)+1/1.5);}
die dem größeren (niedrigeren) der positiven (negativen) unverschobenen und verschobenen Teile entsprechen.
Diese können dann in einem gestapelten Diagramm verwendet werden, um den Bereich einzufärben. Um sicherzustellen, dass nur die Teile zwischen Ihrem p1
und p6
eingefärbt werden, können wir die Tatsache nutzen, dass undefinierte Koordinaten automatisch verworfen werden, also füge ich den Begriff hinzu
*1/(h(x)<i(x))
was zu einer Division durch Null außerhalb unseres Interessenbereichs führt, sodass die Darstellung dort beginnt und endet, wo wir es möchten.
\documentclass{article}
\usepackage{pgfplots}
\begin{document}
\begin{tikzpicture}[
declare function={f(\x)=min(1/\x,-1/\x);},
declare function={g(\x)=max(1/\x,-1/\x);},
declare function={h(\x)=max(f(x),f(x-1.5)+1/1.5);},
declare function={i(\x)=min(g(x),g(x-1.5)+1/1.5);}
]
\begin{axis}[
domain=-5:5,
ymin=-5,ymax=5,
samples=101,
no markers,
smooth
]
\addplot [draw=none, stack plots=y] {h(x)*1/(h(x)<i(x))};
\addplot [draw=none, fill=yellow, thick, stack plots=y] {i(x)*1/(h(x)<i(x))- h(x)*1/(h(x)<i(x))}\closedcycle;
\addplot [black] {f(x)};
\addplot [black] {g(x)};
\addplot [black, dashed] {f(x-1.5)+1/1.5};
\addplot [black, dashed] {g(x-1.5)+1/1.5};
\end{axis}
\end{tikzpicture}
\end{document}
Antwort4
Für alle, die nach dem PSTricks-Äquivalent suchen.
\documentclass[pstricks,border=0pt]{standalone}
\usepackage{pst-eucl,pst-plot}
\def\f(#1){1 #1 div}
\def\F(#1){\f(#1 1.5 sub) 1 1.5 div add}
\def\g(#1){\f(#1 neg)}
\def\G(#1){\g(#1 1.5 sub) 1 1.5 div add}
\def\x(#1){\psGetNodeCenter{#1}#1.x}
\psset{yMaxValue=4,yMinValue=-4,plotpoints=6001}
\begin{document}
\begin{pspicture}[showgrid=false](-4.25,-4.25)(5.5,4.5)
\psclip{\psframe[linestyle=none,linewidth=0pt](-4,-4)(5,4)}
\pstInterFF[PosAngle=135]{\g(x)}{\F(x)}{-2}{P_1}
\pstInterFF[PosAngle=135]{\g(x)}{\G(x)}{-1}{P_2}
\pstInterFF[PosAngle=180]{\G(x)}{\f(x)}{1}{P_3}
\pstInterFF[PosAngle=90]{\G(x)}{\f(x)}{3}{P_4}
\pstInterFF[PosAngle=-45]{\G(x)}{\g(x)}{2}{P_5}
\pstInterFF[PosAngle=0]{\g(x)}{\F(x)}{1}{P_6}
\pscustom*[linecolor=yellow]
{
\psplot{\x(P_1)}{\x(P_2)}{\g(x)}
\psplot{\x(P_2)}{\x(P_3)}{\G(x)}
\psplot{\x(P_3)}{\x(P_4)}{\f(x)}
\psplot{\x(P_4)}{\x(P_5)}{\G(x)}
\psplot{\x(P_5)}{\x(P_6)}{\g(x)}
\psplot{\x(P_6)}{\x(P_1)}{\F(x)}
}
\psplot[linecolor=red]{-4}{5}{\f(x)}
\psplot[linecolor=blue]{-4}{5}{\g(x)}
\psset{linestyle=dashed,dash=3pt 1pt}
\psplot[linecolor=red]{-4}{5}{\F(x)}
\psplot[linecolor=blue]{-4}{5}{\G(x)}
\endpsclip
\psaxes[labelFontSize=\scriptscriptstyle,linecolor=gray]{->}(0,0)(-4,-4)(5,4)[$x$,0][$y$,90]
\end{pspicture}
\end{document}
Anmerkungen
\psset{saveNodeCoors}
\def\x(#1){N-#1.x}
kann als Ersatz verwendet werden für
\def\x(#1){\psGetNodeCenter{#1}#1.x}
Neuestes Update
Der Einfachheit halber mit Infix-Notation.
\documentclass[pstricks,border=12pt]{standalone}
\usepackage{pst-eucl,pst-plot}
\def\f(#1){(1/(#1))}
\def\F(#1){(\f(#1-1.5)+1/1.5)}
\def\g(#1){(\f(-(#1)))}
\def\G(#1){(\g(#1-1.5)+1/1.5)}
\def\x(#1){N-#1.x}
\pstVerb{/I2P {exec AlgParser cvx exec} def}
\begin{document}
\begin{pspicture}[showgrid=false,saveNodeCoors,algebraic,yMaxValue=4,yMinValue=-4,plotpoints=6001](-4.25,-4.25)(5.5,4.5)
\psclip{\psframe[linestyle=none,linewidth=0pt](-4,-4)(5,4)}
\pstInterFF[PosAngle=135]{{\g(x)} I2P}{{\F(x)} I2P}{-2}{P_1}
\pstInterFF[PosAngle=135]{{\g(x)} I2P}{{\G(x)} I2P}{-1}{P_2}
\pstInterFF[PosAngle=180]{{\G(x)} I2P}{{\f(x)} I2P}{1}{P_3}
\pstInterFF[PosAngle=90]{{\G(x)} I2P}{{\f(x)} I2P}{3}{P_4}
\pstInterFF[PosAngle=-45]{{\G(x)} I2P}{{\g(x)} I2P}{2}{P_5}
\pstInterFF[PosAngle=0]{{\g(x)} I2P}{{\F(x)} I2P}{1}{P_6}
\pscustom*[linecolor=yellow]
{
\psplot{\x(P_1)}{\x(P_2)}{\g(x)}
\psplot{\x(P_2)}{\x(P_3)}{\G(x)}
\psplot{\x(P_3)}{\x(P_4)}{\f(x)}
\psplot{\x(P_4)}{\x(P_5)}{\G(x)}
\psplot{\x(P_5)}{\x(P_6)}{\g(x)}
\psplot{\x(P_6)}{\x(P_1)}{\F(x)}
}
\psplot[linecolor=red]{-4}{5}{\f(x)}
\psplot[linecolor=blue]{-4}{5}{\g(x)}
\psset{linestyle=dashed,dash=3pt 1pt}
\psplot[linecolor=red]{-4}{5}{\F(x)}
\psplot[linecolor=blue]{-4}{5}{\G(x)}
\endpsclip
\psaxes[labelFontSize=\scriptscriptstyle,linecolor=gray]{->}(0,0)(-4,-4)(5,4)[$x$,0][$y$,90]
\foreach \i in {1,...,6}{\qdisk(P_\i){2pt}}
\end{pspicture}
\end{document}