Hilfe bei der Fehlersuche

Hilfe bei der Fehlersuche

Ich habe diesen Code geschrieben, aber er wird nicht als PDF ausgegeben. Ich brauche Hilfe bei der Fehlersuche oder vielleicht liegt das Problem an meinem Acrobat Reader. Dies ist der Code

\documentclass{article}
\usepackage[small,nohug,heads=littlevee]{diagrams}
\usepackage{amssymb,latexsym,amsmath}
\usepackage{array}
\usepackage{tikz}
\usetikzlibrary{matrix}
\usepackage{caption}
\begin{document}
\section{Van Kampen theorem}
\begin{theorem}
If \\ 
\vspace \begin{array}[c]{cccc}
A&  \stackrel{i}{\rightarrow} & B\\

\scriptstyle{j}{\downarrow }  \\

C    \\
\end{array}\\ is a data of groups $A$, $B$, and $C$ and homomorphisms $i$ and $j$. Then there exists a pushout $(P,j',i')$ where \begin{equation}P=\frac{B*C}{N} \end{equaition} and $j'(b)=bN,  i'(c)=cN$ where $N$ is the normal subgroup of $B*C$ generated by $\{i(a)j(a^{-1}): a\in A\}$. This pushout called {\bf amalgamated fee product}.
\end{theorem}
\begin{proof}if $a\in A$ then
\begin{eqnarray*}
  j'\circ i(a) &=& i(a)N \\
  &=& j(a) ({{i(a)}^{-1}j(a)})^{-1}\\
  &=& j(a)N \\
 &=&j'\circ j(a)\\
  \end{eqnarray*}
  hence $(P,j',i')$ is a solution.
  Now suppose that $(G,f,g)$ is another solution of the data. By the definition of the free product there exists unique homomorphism $\psi: B*C \rightarrow G$ with $\psi\mathop{\mid_{B}}=f$ and $\psi\mathop{\mid_{C}}=g$, if $b\in B$ and $c\in C$ then $\psi (bc)= f(b)g(c)$ and for all $a\in A$ we have $\psi (i(a)j(a^{-1}))= f\circ i(a). g\circ j(a^{-1}) =1$ because $f\circ i=g\circ j $. Hence $N\leq ker\psi $ \\ 
  Now define 
\begin{equation} \varphi: \frac {B*C}{N}\rightarrow G \end{equation} to be the homomorphism induced by $\psi $ with 
\begin{eqnarray*}
  \varphi \circ j'(b)&=&\varphi (bN)\\
  &=& \psi (b)= f(b)\\ 
\end{eqnarray*} 
and $\varphi \circ i'(c)= \varphi (cN)= \psi (c)=g(c)$ then the following diagram commutes\\

  \begin{figure}
 \begin{center}
\begin{tikzpicture}[x=1.00mm, y=1.00mm, inner xsep=0pt, inner ysep=0pt, outer xsep=0pt, outer ysep=0pt]
\path[line width=0mm] (24.26,37.44) rectangle +(79.52,59.18);
\draw(26.26,90.70) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $A$};
\draw(80.23,90.70) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $B$};
\draw(26.26,56.23) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $C$};
\draw(79.87,56.05) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $G$};
\definecolor{L}{rgb}{0,0,0}
\path[line width=0.30mm, draw=L] (30.78,91.79) -- (78.97,91.79);
\definecolor{F}{rgb}{0,0,0}
\path[line width=0.30mm, draw=L, fill=F] (78.97,91.79) -- (76.17,92.49) -- (78.27,91.79) -- (76.17,91.09) -- (78.97,91.79) -- cycle;
\path[line width=0.30mm, draw=L] (27.89,89.80) -- (27.89,61.82);
\path[line width=0.30mm, draw=L, fill=F] (27.89,61.82) -- (28.59,64.62) -- (27.89,62.52) -- (27.19,64.62) -- (27.89,61.82) -- cycle;
\path[line width=0.30mm, draw=L] (30.42,57.49) -- (78.07,57.49);
\path[line width=0.30mm, draw=L, fill=F] (78.07,57.49) -- (75.27,58.19) -- (77.37,57.49) -- (75.27,56.79) -- (78.07,57.49) -- cycle;
\path[line width=0.30mm, draw=L] (81.68,89.44) -- (81.86,61.10);
\path[line width=0.30mm, draw=L, fill=F] (81.86,61.10) -- (82.54,63.91) -- (81.85,61.80) -- (81.14,63.90) -- (81.86,61.10) -- cycle;
\draw(99.01,40.52) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $P$};
\path[line width=0.30mm, draw=L] (98.65,43.95) -- (84.03,56.77);
\path[line width=0.30mm, draw=L, fill=F] (84.03,56.77) -- (85.67,54.40) -- (84.55,56.31) -- (86.59,55.45) -- (84.03,56.77) -- cycle;
\path[line width=0.30mm, draw=L] (83.66,90.52) -- (99.73,45.76);
\path[line width=0.30mm, draw=L, fill=F] (99.73,45.76) -- (99.44,48.63) -- (99.49,46.42) -- (98.12,48.16) -- (99.73,45.76) -- cycle;
\path[line width=0.30mm, draw=L] (29.69,55.69) -- (98.10,41.97);
\path[line width=0.30mm, draw=L, fill=F] (98.10,41.97) -- (95.50,43.20) -- (97.42,42.11) -- (95.22,41.83) -- (98.10,41.97) -- cycle;
\draw(52.98,87.82) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $i$};
\draw(28.79,76.08) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $j$};
\draw(51.90,59.66) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $g$};
\draw(78.43,75.54) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $f$};
\draw(92.15,70.85) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $j'$};
\draw(59.66,44.68) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $i'$};
\draw(89.44,53.70) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont \varphi };
\end{tikzpicture}%
\caption{VAN_1}
 \end{center}
\end{figure} \\
It remains to show the uniqueness of \varphi. assume that {\varphi\mathop ^{~}}. Since the digram 
 \begin{figure}
\centering
\begin{tikzpicture}[x=1.00mm, y=1.00mm, inner xsep=0pt, inner ysep=0pt, outer xsep=0pt, outer ysep=0pt]
\path[line width=0mm] (38.16,42.32) rectangle +(51.62,49.43);
\draw(58.75,85.83) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $B$};
\draw(40.16,70.85) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $A$};
\draw(58.75,70.49) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $G$};
\draw(69.58,58.94) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $P$};
\draw(78.61,45.40) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont $B*C$};
\definecolor{L}{rgb}{0,0,0}
\path[line width=0.30mm, draw=L] (59.84,84.75) -- (59.84,75.18);
\definecolor{F}{rgb}{0,0,0}
\path[line width=0.30mm, draw=L, fill=F] (59.84,75.18) -- (60.54,77.98) -- (59.84,75.18) -- (59.14,77.98) -- (59.84,75.18) -- cycle;
\path[line width=0.30mm, draw=L] (44.13,72.11) -- (58.03,72.11);
\path[line width=0.30mm, draw=L, fill=F] (58.03,72.11) -- (55.23,72.81) -- (58.03,72.11) -- (55.23,71.41) -- (58.03,72.11) -- cycle;
\path[line width=0.30mm, draw=L] (80.96,50.45) -- (71.75,59.66);
\path[line width=0.30mm, draw=L, fill=F] (71.75,59.66) -- (73.24,57.18) -- (71.75,59.66) -- (74.23,58.17) -- (71.75,59.66) -- cycle;
\path[line width=0.30mm, draw=L] (69.22,62.91) -- (62.00,70.31);
\path[line width=0.30mm, draw=L, fill=F] (62.00,70.31) -- (63.46,67.81) -- (62.00,70.31) -- (64.46,68.79) -- (62.00,70.31) -- cycle;
\path[line width=0.30mm, draw=L] (61.46,84.93) -- (70.13,63.81);
\path[line width=0.30mm, draw=L, fill=F] (70.13,63.81) -- (69.71,66.66) -- (70.13,63.81) -- (68.42,66.13) -- (70.13,63.81) -- cycle;
\path[line width=0.30mm, draw=L] (42.33,70.31) -- (68.86,60.56);
\path[line width=0.30mm, draw=L, fill=F] (68.86,60.56) -- (66.48,62.18) -- (68.86,60.56) -- (65.99,60.87) -- (68.86,60.56) -- cycle;
\path[line width=0.30mm, draw=L] (62.55,88.18) .. controls (75.82,84.47) and (84.98,72.35) .. (84.93,58.57) .. controls (84.92,55.76) and (84.49,52.96) .. (83.66,50.27);
\path[line width=0.30mm, draw=L, fill=F] (83.66,50.27) -- (85.16,52.74) -- (83.66,50.27) -- (83.82,53.15) -- (83.66,50.27) -- cycle;
\path[line width=0.30mm, draw=L] (41.79,69.58) .. controls (47.38,57.70) and (58.57,49.43) .. (71.57,47.56) .. controls (73.72,47.25) and (75.90,47.13) .. (78.07,47.20);
\path[line width=0.30mm, draw=L, fill=F] (78.07,47.20) -- (75.25,47.81) -- (78.07,47.20) -- (75.29,46.41) -- (78.07,47.20) -- cycle;
\draw(62.18,65.07) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont \varphi\mathop ^{~}};
\draw(77.17,55.14) node[anchor=base west]{\fontsize{14.23}{17.07}\selectfont \nu };
\end{tikzpicture}%
\caption{VAN_2}
\end{figure} \\
\~{\varphi} \circ \nu =\psi 
\v

arphi \circ \nu =\varphi 
\nu  is subjective 
Given $p\inP$ choose $\omega \in B*C$, then $\nu (\omega ) = p$,so \~{\varphi}(p)=\~{\varphi}(\nu (\omega)) =\psi (\omega )= (\varphi \circ \nu )(\omega ) =\varphi (p) \Rightarrow \~{\varphi} =\varphi     
\en

d{proof} \\



\end{document} 

Antwort1

Ich habe versucht, die offensichtlichsten LaTeX-Fehler und auch einige der Sprachfehler zu beheben. Ich habe Ihr auch \varphi\mathop^{~}in \tilde{\varphi}das geändert, was Sie anscheinend wollten.

Die größte Änderung betrifft jedoch die Verwendung von tikz-cdzur Erstellung der kommutativen Diagramme. Die Syntax ist recht einfach zu handhaben: Die Diagramme wurden in wenigen Minuten erstellt (und meine Erfahrung mit dem Paket ist noch begrenzt).

\documentclass{article}
\usepackage{amsmath,amssymb,amsthm}
\usepackage{array}
\usepackage{tikz,tikz-cd}

\newtheorem{theorem}{Theorem}

\begin{document}

\section{Van Kampen theorem}
\begin{theorem}
Let
\begin{equation*}
\begin{tikzcd}
A \arrow{r}{i} &  B \arrow{d}{j} \\
{} & C
\end{tikzcd}
\end{equation*}
be a data of groups $A$, $B$, and $C$ and homomorphisms $i$ and $j$. 
Then there exists a pushout $(P,j',i')$ where 
\begin{equation*}
P=\frac{B*C}{N}
\end{equation*}
and $j'(b)=bN$, $i'(c)=cN$ where $N$ is the normal subgroup of $B*C$ 
generated by $\{i(a)j(a^{-1}): a\in A\}$. This pushout is called 
\textbf{amalgamated free product}.
\end{theorem}

\begin{proof}
If $a\in A$ then
\begin{align*}
j'\circ i(a) &= i(a)N \\
 &= j(a) (i(a)^{-1}j(a))^{-1}\\
 &= j(a)N \\
 &= j'\circ j(a)
\end{align*}
hence $(P,j',i')$ is a solution.
Now suppose that $(G,f,g)$ is another solution of the data. By the 
definition of the free product there exists a unique homomorphism 
$\psi\colon B*C \rightarrow G$ with $\psi|_{B}=f$ and  $\psi|_{C}=g$. 
If $b\in B$ and $c\in C$, then $\psi (bc)= f(b)g(c)$ and for all 
$a\in A$ we have $\psi (i(a)j(a^{-1}))= f\circ i(a)$. $g\circ j(a^{-1}) =1$ 
because $f\circ i=g\circ j $. Hence $N\leq \ker\psi$.  

Now define 
\begin{equation*}
\varphi\colon \frac {B*C}{N}\rightarrow G
\end{equation*}
to be the homomorphism induced by $\psi $ with 
\begin{align*}
\varphi \circ j'(b)&=\varphi (bN)\\
  &= \psi (b)= f(b)
\end{align*} 
and $\varphi \circ i'(c)= \varphi (cN)= \psi (c)=g(c)$ 
then the following diagram commutes
\begin{equation*}
\begin{tikzcd}[column sep=3pc,row sep=2pc]
A \arrow{r}{i} \arrow{d}[swap]{j} &
B \arrow{d}[swap]{f} \arrow{ddr}{j'} \\
C \arrow{r}{g} \arrow{drr}[swap]{i'} &
G \\
{} & {} & P \arrow{lu}[swap]{\varphi}
\end{tikzcd}
\tag{VAN$_1$}
\end{equation*}
It remains to show the uniqueness of $\varphi$. Assume that $\tilde{\varphi}$ 
has the same property. Since the diagram 
\begin{equation*}
\begin{tikzcd}[column sep=2.5pc,row sep=2pc]
{} & B \arrow{d} \arrow[bend left]{dddrr} \\
A \arrow{r} \arrow{rrd} \arrow[bend right]{rrrdd} & G \\
{} & {} & P \arrow{ul}[swap]{\tilde{\varphi}} \\
{} & {} & {} & B*C \arrow{ul}[swap]{\nu}
\end{tikzcd}
\tag{VAN$_2$}
\end{equation*}
commutes, $ \tilde{\varphi}\circ \nu =\psi \varphi \circ \nu =\varphi $
and $\nu$  is surjective.

Given $p\in P$ choose $\omega\in B*C$, then $\nu (\omega ) = p$, so 
$\tilde{\varphi}(p)=\tilde{\varphi}(\nu (\omega)) =\psi (\omega )= 
(\varphi \circ \nu )(\omega ) =\varphi (p)$ implies  $\tilde{\varphi}=\varphi$
\end{proof}

\end{document} 

Seite 1

Bildbeschreibung hier eingeben

Seite 2

Bildbeschreibung hier eingeben

verwandte Informationen