So verweisen Sie in Enumthm auf ein bestimmtes Element

So verweisen Sie in Enumthm auf ein bestimmtes Element

Ich habe versucht, eine Definition in LaTeX zu schreiben. Sieht gut aus, aber gibt es eine andere Möglichkeit, das fest codierte (d)-Element im letzten Element zu vermeiden?

\documentclass[a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{euscript}
\usepackage{enumitem}
\usepackage{textcomp}
\newlist{enumthm}{enumerate}{1}
\setlist[enumthm]{label=(\alph*)}
\newcommand\restr[2]{{% we make the whole thing an ordinary symbol
  \left.\kern-\nulldelimiterspace % automatically resize the bar with \right
  #1 % the function
  \vphantom{\big|} % pretend it's a little taller at normal size
  \right|_{#2} % this is the delimiter
  }}
\linespread{1.6}
\newtheorem{thm}{Theorem}[section]
\newtheorem{defn}[thm]{Definition}
\begin{document}
\begin{defn}
Let $X$ be a topological space. A \emph{presheaf} $\mathcal{F}$ (of Abelian groups) on $X$ consists an Abelian group $\mathcal{F}(U)$ for every open subset $U$ of $X$, and a group homomorphism (\emph{restriction map}) $\rho_{UV}:\mathcal{F}(U)\to\mathcal{F}(V)$ for every pair of open subsets $V\subseteq U$ which has the following properties:
\begin{enumthm}
\item $\mathcal{F}(\emptyset )=0$;
\item $\rho_{UU}=\operatorname{Id}$;
\item If we have three open subsets $W\subseteq V\subseteq U$, then $\rho_{UW}=\rho_{VW}\circ\rho_{UV}$.\\
A presheaf is said to be a \emph{sheaf} if in addition
\item (Uniqueness) Let $U$ be an open subset of $X$, $s\in\mathcal{F}$, $\{U_i\}_i$ a covering of $U$ by open subsets $U_i$. If $\restr{s}{U_i}=0$ for every $i$, then $s=0$.
\item (Glueing local sections) Let us keep the notation of (d). Let $s_i\in\mathcal{F}(U_i),i\in I$, be sections such that $\restr{s_i}{{U_i\cap U_j}}=\restr{s_j}{U_i\cap U_j}$. Then there exists a section $s\in \mathcal{F}(U)$ such that $\restr{s}{U_i}=s_i$ (this section $s$ is unique by condition (d)).
\end{enumthm}
\end{defn}
\end{document}

Antwort1

\labelSie können und \refwie bei anderen nummerierten Elementen verwenden . Fügen Sie zB \label{item:unique}im vierten Element hinzu und verwenden Sie \ref{item:unique}im fünften.

Im folgenden Code habe ich es entfernt, \restrda ich nicht weiß, wie es definiert ist.

\documentclass{article}
\usepackage{enumitem,amsthm,amsmath}
\newlist{enumthm}{enumerate}{1}
\setlist[enumthm]{label=(\alph*)}
\newtheorem{thm}{Theorem}[section]
\newtheorem{defn}[thm]{Definition}
\begin{document}

\begin{defn}
Let $X$ be a topological space. A \emph{presheaf} $\mathcal{F}$ (of Abelian groups) on $X$ consists an Abelian group $\mathcal{F}(U)$ for every open subset $U$ of $X$, and a group homomorphism (\emph{restriction map}) $\rho_{UV}:\mathcal{F}(U)\to\mathcal{F}(V)$ for every pair of open subsets $V\subseteq U$ which has the following properties:
\begin{enumthm}
\item $\mathcal{F}(\emptyset )=0$;
\item $\rho_{UU}=\operatorname{Id}$;
\item If we have three open subsets $W\subseteq V\subseteq U$, then $\rho_{UW}=\rho_{VW}\circ\rho_{UV}$.\\
A presheaf is said to be a \emph{sheaf} if in addition
\item (Uniqueness) Let $U$ be an open subset of $X$, $s\in\mathcal{F}$, $\{U_i\}_i$ a covering of $U$ by open subsets $U_i$. If ${s}{U_i}=0$ for every $i$, then $s=0$.
\label{item:unique}
\item (Glueing local sections) Let us keep the notation of \ref{item:unique}. Let $s_i\in\mathcal{F}(U_i),i\in I$, be sections such that ${s_i}{{U_i\cap U_j}}={s_j}{U_i\cap U_j}$. Then there exists a section $s\in \mathcal{F}(U)$ such that ${s}{U_i}=s_i$ (this section $s$ is unique by condition \ref{item:unique}).
\end{enumthm}
\end{defn}

\end{document}

verwandte Informationen