So zeichnen Sie mit TikZ eine Hyperbel unter Angabe der Brennpunkte und der festen Differenzdistanz

So zeichnen Sie mit TikZ eine Hyperbel unter Angabe der Brennpunkte und der festen Differenzdistanz

Wie kann ich es mit TikZ zeichnen, wenn die beiden Brennpunktkoordinaten $(x_1,y_1)$und $(x_2,y_2)$die Hyperbel sowie die feste Differenzdistanz gegeben sind?

Hier eine kurze Erklärung:

Bildbeschreibung hier eingeben Bildbeschreibung hier eingeben

Antwort1

Um die Hyperbel zu erhalten, können Sie die Standardhyperbel zeichnen: x -> 1/xin einer geeigneten Basis mit dem Mittelpunkt der Hyperbel und den Vektoren auf den Asymptoten.

picsHier ist eine in TiKz 3.0 eingeführte Lösung :

% definition of pic{hyperbola}
\tikzset{
  pics/hyperbola/.style args={(#1)-<#2>-(#3)[#4]}{
    code = { %
      \draw [ samples=100, domain={{1/#4}:{#4}}, % the "size" of the hyperbola 
              shift=($(#1)!.5!(#3)$), % the center of the hyperbola
              x=($(#1)!.25!atan(#2):(#3) - (#1)$), % the first vector of the new base
              y=($(#1)!.25!-atan(#2):(#3) - (#1)$), % the second vector of the new base
              pic actions % transfer pic's styles
            ]
      plot (\x,1/\x) plot (-\x,-1/\x);
    }
  }
}

% example of use
\begin{tikzpicture}
  \draw[help lines] (-4,-3) grid (4,4);
  % the focal points
  \fill (35:2) coordinate (F1) circle(1pt) node[above]{$F_1$};
  \fill (0:-1) coordinate (F2) circle(1pt) node[below]{$F_2$};
  % the center of the hyperbola
  \fill ($(F1)!.5!(F2)$) circle(1pt) node[fill=white, above left]{$\frac{F_1+F_2}2$};
  % the hyperbola with b/a=.7 and "domain" [1/5:5]
  \path (0,0) pic[thick, red]{hyperbola={(F1)-<.7>-(F2)[5]}};
\end{tikzpicture}

Bildbeschreibung hier eingeben

Um eine Hyperbel mit den Brennpunkten (F1) und (F2), dem Verhältnis b/a und der Größe s zu zeichnen, können Sie jetzt einfach Folgendes tun:

\path (0,0) pic[thick, red]{hyperbola={(F1)-<b/a>-(F2)[s]}};

Antwort2

Dabei gibt es tatsächlich einen (mehr oder weniger) einfachen Weg, dies zu tun. Man nimmt einfach die Standardparametrisierung einer Hyperbel, deren Mittelpunkt der Ursprung ist, und dreht und verschiebt diese dann so, dass die Brennpunkte an der gewünschten Stelle liegen.

Prämetrisierung von Hyperbeln

Das einzige Problem ist, dass die Anwendung affiner Transformationen auf PGFplots-Koordinaten nicht eingebaut ist, aber zum Glück ist die FrageWie kann ich in pgfplots eine affine Koordinatentransformation durchführen?bietet hierfür eine sehr gute Lösung, die ich so angepasst habe, dass sie anstelle von Basisvektoren einen Winkel annimmt.

Sie können sogar TikZ-Dekorationen auf der Hyperbel zeichnen, als ob sie um den Ursprung zentriert wäre, indem Sie die von TikZ bereitgestellten shiftund rotate around-Tasten verwenden. Falls Sie sich fragen: Diese funktionieren nicht zum Transformieren \addplotvon Koordinaten; stattdessen bringen sie die Dinge durcheinander, wenn sie auf Diagrammen verwendet werden.

Kommentierte Hyperbel

Der Code selbst ist ziemlich unkompliziert und kommentiert, er sollte also leicht zu verstehen sein.:-)

\documentclass[tikz,margin=3pt]{standalone}
\usepackage{pgfplots}

\pgfplotsset{
   % 3 Parameters: angle, xshift, yshift
  rotate shift/.style n args={3}{
    filter point/.code = {
      \pgfkeysgetvalue{/data point/x}\X
      \pgfkeysgetvalue{/data point/y}\Y
      \pgfmathparse{cos(#1)*\X - sin(#1)*\Y + #2}
      \pgfkeyslet{/data point/x}\pgfmathresult
      \pgfmathparse{sin(#1)*\X + cos(#1)*\Y + #3}
      \pgfkeyslet{/data point/y}\pgfmathresult
    }
  }
}

% Given: The two foci A and B
\def\Ax{-2}\def\Ay{1}
\def\Bx{3}\def\By{4}
% Given: a = half the distance difference
\def\a{2}

% Calculate half the focus distance c
\pgfmathsetmacro{\c}{sqrt((\Ax-\Bx)^2 + (\Ay-\By)^2)/2}
\pgfmathsetmacro{\b}{sqrt(\c^2-\a^2)}

% Calculate the rotation angle
\pgfmathsetmacro{\rotation}{atan2(\By-\Ay, \Bx-\Ax)}

% Calculate offset from origin to center between hyperbolas
\pgfmathsetmacro{\offsetX}{(\Ax+\Bx)/2}
\pgfmathsetmacro{\offsetY}{(\Ay+\By)/2}

\begin{document}
%\rotation
\begin{tikzpicture}
\begin{axis}[
    axis equal,
    axis lines=center,
]

% Draw the hyperbolas using the PGFplots rotate and shift key defined above.
% Everything is drawn as if the hyperbola were centered around (0,0)
\begin{scope}[/pgfplots/rotate shift={\rotation}{\offsetX}{\offsetY}]
    \addplot[domain=-2:2] ({\a*cosh(x)}, {\b*sinh(x)});
    \addplot[domain=-2:2] ({-\a*cosh(x)}, {\b*sinh(x)});
    \addplot[only marks, mark=+] coordinates {(-\c,0) (\c,0)};
\end{scope}

% Draw some annotations using the TikZ rotate and shift keys.
% Everything is drawn as if the hyperbola were centered around (0,0)
\begin{scope}[shift={(axis direction cs:\offsetX,\offsetY)}, rotate around={\rotation:(axis cs:0,0)}, ]
    \draw (axis cs:-\c,0) -- (axis cs:\c,0);
    \draw[densely dashed]
        (axis cs:-\c,0) node[left] {A}
        -- (axis cs:{\a*cosh(1)}, {\b*sinh(1)}) node[circle,fill, inner sep=1pt] {}
        -- (axis cs:\c,0) node[right] {B};
\end{scope}
\end{axis}
\end{tikzpicture}
\end{document}

Antwort3

Hier ist eine alternative Lösung mit TikZ, aber ohne PGFPlots. Die Grundidee ist dieselbe wie in Fritz‘ Antwort: Drehen und Verschieben. Die Parametrisierung erfolgt so, dass der Benutzer das Verhältnis von azu c( \acRatio) angibt, wobei cdie Hälfte der Entfernung zwischen den Brennpunkten und die aHälfte der festen Differenz der Entfernungen von einem bestimmten Punkt der Hyperbel zu den beiden Brennpunkten ist.

Eine gute Referenz zur Mathematik der Hyperbel findet sich unterMathewelt.

Ausgabe des Beispielcodes

\documentclass[tikz,border=2pt]{standalone}
\usetikzlibrary{calc}
\begin{document}
\begin{tikzpicture}

% Clipping area
\pgfmathsetmacro{\clipLeft}{-4}
\pgfmathsetmacro{\clipRight}{4}
\pgfmathsetmacro{\clipBottom}{-1}
\pgfmathsetmacro{\clipTop}{4}
\clip (\clipLeft,\clipBottom) rectangle(\clipRight,\clipTop);

% Parameters of the hyperbola:
% - Foci (A) and (B). Their distance is 2*c.
% - Ratio of a to c, \acRatio, where a is half of the smallest
%   distance between the two sides of the hyperbola.
%   A number greater than 0, not larger than 1.
\coordinate (A) at (-0.3,1);
\coordinate (B) at (-0.2,2);
\pgfmathsetmacro{\acRatio}{0.35}

%% Computation
% Half the distance between foci
\coordinate (BA) at ($ (B)-(A) $);
\newdimen\myBAx
\pgfextractx{\myBAx}{\pgfpointanchor{BA}{center}}
\newdimen\myBAy
\pgfextracty{\myBAy}{\pgfpointanchor{BA}{center}}
\pgfmathsetlengthmacro{\c}{veclen(\myBAx,\myBAy)/2}
% Semiminor axis
\pgfmathsetlengthmacro{\b}{sqrt(1-\acRatio^2)*\c}
% Semimajor axis
\pgfmathsetlengthmacro{\a}{\acRatio*\c}
% Rotation angle
\pgfmathanglebetweenlines{\pgfpoint{0}{0}}{\pgfpoint{1}{0}}
{\pgfpointanchor{A}{center}}{\pgfpointanchor{B}{center}}
\let\rotAngle\pgfmathresult
% Shift
\coordinate (O) at ($ (A)!.5!(B) $);
%% Plotting
% Hyperbola. Adjust domain if a wider view is needed.
\tikzset{hyperbola/.style={rotate=\rotAngle,shift=(O),
    domain=-3:3,variable=\t,samples=50,smooth}}
\draw[hyperbola] plot ({ \a*cosh(\t)},{\b*sinh(\t)});
\draw[hyperbola] plot ({-\a*cosh(\t)},{\b*sinh(\t)});
% Asymptotes
\pgfmathsetmacro{\baRatio}{\b/\a}
\tikzset{asymptote/.style={rotate=\rotAngle,shift=(O),
    samples=2,domain=\clipLeft:\clipRight,dash pattern=on 2mm off 1mm}}
\draw[asymptote] plot ({\x},{\baRatio*\x});
\draw[asymptote] plot ({\x},{-\baRatio*\x});
% Axes
\tikzset{axis/.style={->,black!40}}
\draw[axis] (\clipLeft,0) -- (\clipRight,0);
\draw[axis] (0,\clipBottom) -- (0,\clipTop);
% Line segment between foci
\draw[blue,thick] (A) -- (O);
\draw[red,thick] (O) -- (B);
% Foci
\fill (A) circle (0.5mm);
\fill (B) circle (0.5mm);
\end{tikzpicture}
\end{document}

verwandte Informationen