Nummerieren Sie die Algorithmen mit itemize oder einer anderen Umgebung

Nummerieren Sie die Algorithmen mit itemize oder einer anderen Umgebung

Ich versuche, die beiden algorithmUmgebungen zu nummerieren und etwas Abstand zwischen ihnen zu lassen, aber ich erhalte nur die Nummerierung an der Seite. Wie kann ich es schaffen, die Nummer vor den Algorithmen zu erhalten?

Bildbeschreibung hier eingeben

Code:

\documentclass{article}
\usepackage{german,t1enc}
\usepackage[linesnumbered,ruled,vlined]{algorithm2e} 
\usepackage{amsmath}
\renewcommand{\baselinestretch}{1.5}
\usepackage{mathtools}

\begin{document}
\begin{itemize}
\item[1.]

\begin{algorithm}[H]
\SetAlgoLined
\KwData{2 graphs  T and \'{T} with nodes V and \'{V}.}
\KwResult{Find whether T and \'{T} are isomorph.}

function(T, \'{T}) \\
\Indp Find  bijection of $\forall v \in V$ with $v_1, v_2  \dots , v_k$ in T so that $\pi(v)$ has the following childern $\pi(v_1), \pi(v_2), \dots, \pi(v_n)$ in \'{T}; \\
\If{the bijection is permutation}{
  T and \'{T} are isomorph;
}
\end{algorithm}

\item[2.]

\begin{algorithm}[H]
\SetAlgoLined
\KwData{2 graphs  T and \'{T} with nodes V and \'{V}.}
\KwResult{Find whether T and \'{T} are isomorph.}

function(T, \'{T}) \\
\Indp Find  bijection of $\forall v \in V$ with $v_1, v_2  \dots , v_k$ in T so that $\pi(v)$ has the following childern $\pi(v_1), \pi(v_2), \dots, \pi(v_n)$ in \'{T}; \\
\If{the bijection is permutation}{
  T and \'{T} are isomorph;
}
\end{algorithm}

\end{itemize}


\end{document}

Antwort1

Platzieren Sie ein \mbox{}vor den Algorithmusumgebungen (nach jedem \item)

Die Umgebung sollte durch „die die Nummerierung bereitstellt“ anstelle von „usw.“ itemizeersetzt werden .enumerate\item[1.]

\documentclass{article}
%\usepackage{german,t1enc} % Is this needed?
\usepackage{enumitem}
\usepackage[linesnumbered,ruled,vlined]{algorithm2e} 
\usepackage{amsmath}
\renewcommand{\baselinestretch}{1.5}
\usepackage{mathtools}

\begin{document}
\begin{enumerate}
\item \mbox{}

\begin{algorithm}[H]
\SetAlgoLined
\KwData{2 graphs  T and \'{T} with nodes V and \'{V}.}
\KwResult{Find whether T and \'{T} are isomorph.}

function(T, \'{T}) \\
\Indp Find  bijection of $\forall v \in V$ with $v_1, v_2  \dots , v_k$ in T so that $\pi(v)$ has the following childern $\pi(v_1), \pi(v_2), \dots, \pi(v_n)$ in \'{T}; \\
\If{the bijection is permutation}{
  T and \'{T} are isomorph;
}
\end{algorithm}

\item \mbox{}

\begin{algorithm}[H]
\SetAlgoLined
\KwData{2 graphs  T and \'{T} with nodes V and \'{V}.}
\KwResult{Find whether T and \'{T} are isomorph.}

function(T, \'{T}) \\
\Indp Find  bijection of $\forall v \in V$ with $v_1, v_2  \dots , v_k$ in T so that $\pi(v)$ has the following childern $\pi(v_1), \pi(v_2), \dots, \pi(v_n)$ in \'{T}; \\
\If{the bijection is permutation}{
  T and \'{T} are isomorph;
}
\end{algorithm}

\end{enumerate}


\end{document}

Bildbeschreibung hier eingeben

verwandte Informationen