Gehäuseausrichtung und Anzeigestil für alle Umgebungen

Gehäuseausrichtung und Anzeigestil für alle Umgebungen

Bitte beachten Sie den folgenden „minimalen“ Code:

\documentclass{article}
\usepackage{amsmath}% http://ctan.org/pkg/amsmath
\begin{document}\begin{align*}
(p's_y)(z)&=(ps_xs_y)(z)=\\
    &=\begin{cases}
        p'(z)                       &   z\neq y\\
        \sum_{v\in N(y)}p'(v)-p'(z) &       z=y
    \end{cases}\\
    &=\begin{cases}
        p(z)                                            &   z\neq x,y\\
        \sum_{v\in N(x)}p(v)-p(x)                       &   z=x\\
        \sum_{v\in N(y)\setminus\{x\}}p'(v)+p'(x)-p'(y) &   z=y
    \end{cases}\\
    &=\begin{cases}
        p(z)                                            &   z\neq x,y\\
        \sum_{v\in N(x)}p(v)-p(x)                       &   z=x\\
        \sum_{v\in N(y)\setminus\{x\}} p(v) +
        \sum_{v\in N(x)}p(x)-p(x)-p(y)                  &   z=y
    \end{cases}\\
    &=\begin{cases}
        p(z)                                            &   z\neq x,y\\
        \sum_{v\in N(x)}p(v)-p(x)                       &   z=x\\
        \sum_{v\in N(y)\setminus\{x\}} p(v) +
        \sum_{v\in N(x)\setminus\{y\}} p(v) -p(x)       &   z=y
    \end{cases}\\
    &=\begin{cases}
        p(z)                                                        &   z\neq x,y\\
        \sum_{v\in N(x)}p(v)-p(x)                                   &   z=x\\
        \sum_{v\in \left(N(x)\cup N(y)\right)\setminus\{x,y\}} p(v) &   z=y
    \end{cases}
\end{align*}
\end{document}​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​

Daraus ergibt sich Folgendes:

Bildbeschreibung hier eingeben

So nun zu meinen Fragen:

  1. Wie kann ich „ \displaystyleund “ global \limitsfür das gesamte Dokument und alle Umgebungen festlegen, ohne es immer wieder neu zu deklarieren (also ohne \displaystyle\sum\limitsjedes Mal explizit … zu schreiben).
  2. Wie kann ich alle Bedingungen (z. B. z=y...) anpassen?
  3. Wie kann ich die erste Spalte cases(also die Summen und p(x)) zentrieren?

Antwort1

Sie können dies tun, indem Sie den größten Gegenstand dcasesaus der mathtoolsVerpackung nehmen und messen, aber das Endergebnis ist meiner Meinung nach viel schlechter als auf Ihrem Bild:

\documentclass{article}
\usepackage{amsmath,mathtools}

\newlength{\longestcase}
\newcommand{\longcase}[1]{%
  \mathmakebox[\longestcase][l]{#1}%
}

\begin{document}

\settowidth{\longestcase}{%
  $\displaystyle
   \sum_{v\in N(y)\setminus\{x\}} p(v) +
   \sum_{v\in N(x)}p(x)-p(x)-p(y)
  $}
\begin{align*}
(p's_y)(z)
  &=(ps_xs_y)(z)=\\
  &=\begin{dcases}
    \longcase{p'(z)}                                 & z\neq y\\[2ex]
    \sum_{v\in N(y)}p'(v)-p'(z)                      & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                  & z\neq x,y\\[2ex]
    \sum_{v\in N(x)}p(v)-p(x)                        & z=x\\
    \sum_{v\in N(y)\setminus\{x\}}p'(v)+p'(x)-p'(y ) & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                  & z\neq x,y\\[2ex]
    \sum_{v\in N(x)}p(v)-p(x)                        & z=x\\
    \sum_{v\in N(y)\setminus\{x\}} p(v) +
    \sum_{v\in N(x)}p(x)-p(x)-p(y)                   & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                  & z\neq x,y\\[2ex]
    \sum_{v\in N(x)}p(v)-p(x)                        & z=x\\
    \sum_{v\in N(y)\setminus\{x\}} p(v) +
    \sum_{v\in N(x)\setminus\{y\}} p(v) -p(x)        & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                  & z\neq x,y\\[2ex]
    \sum_{v\in N(x)}p(v)-p(x)                        & z=x\\
    \sum_{v\in (N(x)\cup N(y))\setminus\{x,y\}} p(v) & z=y
    \end{dcases}
\end{align*}

\end{document}​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​

Bildbeschreibung hier eingeben

Das Zentrieren der Objekte macht es noch schlimmer.;-)

\documentclass{article}
\usepackage{amsmath,mathtools}

\newlength{\longestcase}
\newcommand{\longcase}[1]{%
  \mathmakebox[\longestcase][c]{#1}%
}

\begin{document}

\settowidth{\longestcase}{%
  $\displaystyle
   \sum_{v\in N(y)\setminus\{x\}} p(v) +
   \sum_{v\in N(x)}p(x)-p(x)-p(y)
  $}
\begin{align*}
(p's_y)(z)
  &=(ps_xs_y)(z)=\\
  &=\begin{dcases}
    \longcase{p'(z)}                                            & z\neq y\\[2ex]
    \longcase{\sum_{v\in N(y)}p'(v)-p'(z)}                      & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                             & z\neq x,y\\[2ex]
    \longcase{\sum_{v\in N(x)}p(v)-p(x)}                        & z=x\\
    \longcase{\sum_{v\in N(y)\setminus\{x\}}p'(v)+p'(x)-p'(y)}  & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                             & z\neq x,y\\[2ex]
    \longcase{\sum_{v\in N(x)}p(v)-p(x)}                        & z=x\\
    \longcase{\sum_{v\in N(y)\setminus\{x\}} p(v) +
      \sum_{v\in N(x)}p(x)-p(x)-p(y)}                           & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                             & z\neq x,y\\[2ex]
    \longcase{\sum_{v\in N(x)}p(v)-p(x)}                        & z=x\\
    \longcase{\sum_{v\in N(y)\setminus\{x\}} p(v) +
      \sum_{v\in N(x)\setminus\{y\}} p(v) -p(x)}                & z=y
    \end{dcases}\\
  &=\begin{dcases}
    \longcase{p(z)}                                             & z\neq x,y\\[2ex]
    \longcase{\sum_{v\in N(x)}p(v)-p(x)}                        & z=x\\
    \longcase{\sum_{v\in (N(x)\cup N(y))\setminus\{x,y\}} p(v)} & z=y
    \end{dcases}
\end{align*}
\end{document}​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​

Bildbeschreibung hier eingeben

Antwort2

Eine Variante, bei der das eqparboxPaket zum Messen der breitesten linken Seite mit einem Tag-System und weniger horizontalem Abstand mit dem \smashoperatorBefehl von verwendet wird mathtools:

\documentclass{article}
\usepackage{mathtools}% http://ctan.org/pkg/amsmath
\usepackage{eqparbox}
\newcommand\eqmathbox[2][]{\eqmakebox[#1]{\ensuremath{\displaystyle#2}}}

\begin{document}

\begin{align*}
  (p's_y)(z) & =(ps_xs_y)(z)= \\
                                                                                                      & =\begin{dcases}
  \eqmathbox[C]{p'(z)} & z\neq y \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(y)}}p'(v)-p'(z)} & z=y
  \end{dcases}\\[1ex]
                                                                                                      & =\begin{dcases}
  \eqmathbox[C]{p(z)} & z\neq x,y \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(x)}}p(v)-p(x)} & z=x \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(y)\setminus\{x\}}}p'(v)+p'(x)-p'(y)} & z=y
  \end{dcases}\\[1ex]
                                                                                                      & =\begin{dcases}
  \eqmathbox[C]{p(z)} & z\neq x,y \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(x)}}p(v)-p(x)} & z=x \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(y)\setminus\{x\}}} p(v) +
  \smashoperator{\sum_{v\in N(x)}}p(x)-p(x)-p(y)} & z=y
  \end{dcases}\\[1ex]
                                                                                                      & =\begin{dcases}
  \eqmathbox[C]{p(z)} & z\neq x,y \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(x)}}p(v)-p(x)} & z=x \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(y)\setminus\{x\}}} p(v) +
  \smashoperator{\sum_{v\in N(x)\setminus\{y\}}} p(v) -p(x)} & z=y
  \end{dcases}\\[1ex]
                                                                                                      & =\begin{dcases}
  \eqmathbox[C]{p(z)} & z\neq x,y \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in N(x)}}p(v)-p(x)} & z=x \\
  \eqmathbox[C]{\smashoperator[r]{\sum_{v\in \left(N(x)\cup N(y)\right)\setminus\{x,y\}}} p(v)} & z=y
  \end{dcases}
\end{align*}

\end{document} 

Bildbeschreibung hier eingeben

verwandte Informationen