Warum führt das Skalieren eines Tikz-Bildes dazu, dass alles innerhalb des Bereichs „Canvas transformieren“ verschwindet?

Warum führt das Skalieren eines Tikz-Bildes dazu, dass alles innerhalb des Bereichs „Canvas transformieren“ verschwindet?

Ich habe ein Tikz-Bild gezeichnet, aber nachdem ich das Bild mit skaliert habe \begin{tikzpicture}[scale=200/(\hsize-24)], verschwindet alles innerhalb des Bereichs „Canvas transformieren“. Kann das jemand erklären?

Dies ist das Originalbild von Tikz

\documentclass[tikz, border=12]{standalone}

\usepackage{tikz, tkz-euclide, pgfmath, pstricks}
\usetikzlibrary{intersections, decorations.markings, angles,
quotes, calc, arrows, arrows.meta}
\usetkzobj{all}
%
\definecolor{blue}{RGB}{0,51,255}
\definecolor{green}{RGB}{0,153,0}
\definecolor{blue1}{RGB}{174,214,241}
\definecolor{blue}{RGB}{161,207,223}
\definecolor{yellow}{RGB}{255,220,0}
\colorlet{dcolor}{blue}
%
\begin{document}
\begin{tikzpicture}
\pgfgettransformentries{\mya}{\myb}{\myc}{\myd}{\mys}{\myt}
\pgfmathsetmacro{\preserve}{1/\mya}
\begin{scope}[>={Stealth[scale=1.2]} , thick,rotate=0 ] 

%
\newcommand\height{10}
%
\newcommand\Ac{-4}
%
\newcommand\Bc{27.46586300953384}
%
\pgfmathsetmacro{\distance}{\Bc+\Ac}
\draw (0,-0.2) node [color=black,fill=white,below] {$Q$};
\draw [fill=black] (\Ac-0.1*\distance,0)--(\Bc+0.1*\distance,0)--(\Bc+0.1*\distance,0.01*\height)--(\Ac-0.1*\distance,0.01*\height)--cycle;
\draw [fill=black] (\Ac-0.1*\distance,\height)--(\Bc+0.1*\distance,\height)--(\Bc+0.1*\distance,1.01*\height)--(\Ac-0.1*\distance,1.01*\height)--cycle;
\draw [black,densely dashed](0,0)--(0,\height);


%
\coordinate (pulleyCenter) at (0,0.9*\height);
%
\pgfmathsetmacro{\pulleyRadius}{0.0375*\height}

\draw (0,0.9*\height-\pulleyRadius) node [color=black,fill=white,below] {$P$};

\draw [line width = 0.2*\distance,line cap=round](0,0.9*\height)--(0,0.995*\height);
\draw [line width = 0.2*\distance]([shift={(0,\height)}]0:-0.025*\height) arc[radius=0.025*\height, start angle=180, end angle= 360];

\pgfmathsetmacro{\ax}{\Bc-0.04*\distance}
\pgfmathsetmacro{\bx}{\Bc+0.04*\distance}
\pgfmathsetmacro{\lowerwidth}{\bx-\ax}
\pgfmathsetmacro{\aby}{0.2+0.01*\height}
\pgfmathsetmacro{\dx}{\Bc-0.08*\distance}
\pgfmathsetmacro{\cx}{\Bc+0.08*\distance}
\pgfmathsetmacro{\upperwidth}{\cx-\dx}
\pgfmathsetmacro{\cartheight}{1.25*\lowerwidth}
\pgfmathsetmacro{\dcy}{\aby+\cartheight}
\coordinate(a) at (\ax,\aby);
\coordinate(b) at (\bx,\aby);
\coordinate(d) at (\dx,\dcy);
\coordinate(c) at (\cx,\dcy);


\pgfmathsetmacro{\adx}{\Bc-0.06*\distance}
\pgfmathsetmacro{\ady}{\aby+0.5*\cartheight}
\coordinate (c1) at (\adx,\ady);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c1)--++(180:0.01*\Bc) coordinate (e1);


\coordinate (c2) at (\Bc+0.06*\distance,\ady);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c2)--++(0:0.01*\Bc) coordinate (e2);


\draw [line width = 0.005*\height cm,blue!200,fill=blue](a)--(b)--(c)--(d)--cycle;

\tkzTangent[from with R=e1](pulleyCenter,\pulleyRadius cm) \tkzGetPoints{D1}{D2}

\draw[yellow, line width = 0.010*\height cm,line cap =round](e1)--(D1);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c1)--(e1);
\draw [line width = 0.005*\height cm,blue!200,fill=blue](a)--(b)--(c)--(d)--cycle;

\pgfmathsetmacro{\wheelax}{0.25*\lowerwidth+\ax}
\pgfmathsetmacro{\wheelbx}{0.75*\lowerwidth+\ax}
\draw[black,fill=black](\wheelax,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelax,\aby)circle(0.75*\aby-0.75*0.011*\height);

\draw[black,fill=black](\wheelbx,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelbx,\aby)circle(0.75*\aby-0.75*0.011*\height);

\draw (\Bc,\ady) node [color=black] {$A$};


\pgfmathsetmacro{\shift}{\Ac-\Bc}
\begin{scope}[transform canvas={xshift=\shift cm}]
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c1)--(e1);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c2)--(e2);
\coordinate (pulleyCenter) at (-1*\shift,0.9*\height);
\tkzTangent[from with R=e2](pulleyCenter,\pulleyRadius cm) \tkzGetPoints{D1}{D2}
\draw[yellow, line width = 0.01*\height cm,line cap =round](e2)--(D2);
\draw[gray!120,line width = 0.01*\height cm,line cap=round](c2)--(e2);
\draw [line width = 0.005*\height cm,blue!200,fill=blue](a)--(b)--(c)--(d)--cycle;
\draw[black,fill=black](\wheelax,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelax,\aby)circle(0.75*\aby-0.75*0.011*\height);

\draw[black,fill=black](\wheelbx,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelbx,\aby)circle(0.75*\aby-0.75*0.011*\height);
\draw (\Bc,\ady) node [color=black] {$B$};

\draw [gray,fill=gray!50,line width = 0.005*\height cm](pulleyCenter) circle(\pulleyRadius);
\end{scope}



\end{scope}
\end{tikzpicture}
\end{document}

Bildbeschreibung hier eingeben

Und das ist das gleiche Tikz-Bild nach der Verwendung\begin{tikzpicture}[scale=200/(\hsize-24)]

\documentclass[tikz, border=12]{standalone}

\usepackage{tikz, tkz-euclide, pgfmath, pstricks}
\usetikzlibrary{intersections, decorations.markings, angles,
quotes, calc, arrows, arrows.meta}
\usetkzobj{all}
%
\definecolor{blue}{RGB}{0,51,255}
\definecolor{green}{RGB}{0,153,0}
\definecolor{blue1}{RGB}{174,214,241}
\definecolor{blue}{RGB}{161,207,223}
\definecolor{yellow}{RGB}{255,220,0}
\colorlet{dcolor}{blue}
%
\begin{document}
\begin{tikzpicture}[scale=200/(\hsize-24)]

\pgfgettransformentries{\mya}{\myb}{\myc}{\myd}{\mys}{\myt}
\pgfmathsetmacro{\preserve}{1/\mya}
\begin{scope}[>={Stealth[scale=1.2]} , thick,rotate=0 ] 

%
\newcommand\height{10}
%
\newcommand\Ac{-4}
%
\newcommand\Bc{27.46586300953384}
%
\pgfmathsetmacro{\distance}{\Bc+\Ac}
\draw (0,-0.2) node [color=black,fill=white,below] {$Q$};
\draw [fill=black] (\Ac-0.1*\distance,0)--(\Bc+0.1*\distance,0)--(\Bc+0.1*\distance,0.01*\height)--(\Ac-0.1*\distance,0.01*\height)--cycle;
\draw [fill=black] (\Ac-0.1*\distance,\height)--(\Bc+0.1*\distance,\height)--(\Bc+0.1*\distance,1.01*\height)--(\Ac-0.1*\distance,1.01*\height)--cycle;
\draw [black,densely dashed](0,0)--(0,\height);


%
\coordinate (pulleyCenter) at (0,0.9*\height);
%
\pgfmathsetmacro{\pulleyRadius}{0.0375*\height}

\draw (0,0.9*\height-\pulleyRadius) node [color=black,fill=white,below] {$P$};

\draw [line width = 0.2*\distance,line cap=round](0,0.9*\height)--(0,0.995*\height);
\draw [line width = 0.2*\distance]([shift={(0,\height)}]0:-0.025*\height) arc[radius=0.025*\height, start angle=180, end angle= 360];

\pgfmathsetmacro{\ax}{\Bc-0.04*\distance}
\pgfmathsetmacro{\bx}{\Bc+0.04*\distance}
\pgfmathsetmacro{\lowerwidth}{\bx-\ax}
\pgfmathsetmacro{\aby}{0.2+0.01*\height}
\pgfmathsetmacro{\dx}{\Bc-0.08*\distance}
\pgfmathsetmacro{\cx}{\Bc+0.08*\distance}
\pgfmathsetmacro{\upperwidth}{\cx-\dx}
\pgfmathsetmacro{\cartheight}{1.25*\lowerwidth}
\pgfmathsetmacro{\dcy}{\aby+\cartheight}
\coordinate(a) at (\ax,\aby);
\coordinate(b) at (\bx,\aby);
\coordinate(d) at (\dx,\dcy);
\coordinate(c) at (\cx,\dcy);


\pgfmathsetmacro{\adx}{\Bc-0.06*\distance}
\pgfmathsetmacro{\ady}{\aby+0.5*\cartheight}
\coordinate (c1) at (\adx,\ady);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c1)--++(180:0.01*\Bc) coordinate (e1);


\coordinate (c2) at (\Bc+0.06*\distance,\ady);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c2)--++(0:0.01*\Bc) coordinate (e2);


\draw [line width = 0.005*\height cm,blue!200,fill=blue](a)--(b)--(c)--(d)--cycle;

\tkzTangent[from with R=e1](pulleyCenter,\pulleyRadius cm) \tkzGetPoints{D1}{D2}

\draw[yellow, line width = 0.010*\height cm,line cap =round](e1)--(D1);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c1)--(e1);
\draw [line width = 0.005*\height cm,blue!200,fill=blue](a)--(b)--(c)--(d)--cycle;

\pgfmathsetmacro{\wheelax}{0.25*\lowerwidth+\ax}
\pgfmathsetmacro{\wheelbx}{0.75*\lowerwidth+\ax}
\draw[black,fill=black](\wheelax,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelax,\aby)circle(0.75*\aby-0.75*0.011*\height);

\draw[black,fill=black](\wheelbx,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelbx,\aby)circle(0.75*\aby-0.75*0.011*\height);

\draw (\Bc,\ady) node [color=black] {$A$};


\pgfmathsetmacro{\shift}{\Ac-\Bc}
\begin{scope}[transform canvas={xshift=\shift cm}]
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c1)--(e1);
\draw [gray!120,line width = 0.01*\height cm,line cap=round](c2)--(e2);
\coordinate (pulleyCenter) at (-1*\shift,0.9*\height);
\tkzTangent[from with R=e2](pulleyCenter,\pulleyRadius cm) \tkzGetPoints{D1}{D2}
\draw[yellow, line width = 0.01*\height cm,line cap =round](e2)--(D2);
\draw[gray!120,line width = 0.01*\height cm,line cap=round](c2)--(e2);
\draw [line width = 0.005*\height cm,blue!200,fill=blue](a)--(b)--(c)--(d)--cycle;
\draw[black,fill=black](\wheelax,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelax,\aby)circle(0.75*\aby-0.75*0.011*\height);

\draw[black,fill=black](\wheelbx,\aby)circle(\aby-0.011*\height);
\draw[black,fill=gray](\wheelbx,\aby)circle(0.75*\aby-0.75*0.011*\height);
\draw (\Bc,\ady) node [color=black] {$B$};

\draw [gray,fill=gray!50,line width = 0.005*\height cm](pulleyCenter) circle(\pulleyRadius);
\end{scope}



\end{scope}
\end{tikzpicture}
\end{document}

Bildbeschreibung hier eingeben

Antwort1

Die Skalierung des Tikz-Bildes gilt nicht für die X-Verschiebung innerhalb der Transformationsleinwand, daher musste ich nur die Skalierung auf die Verschiebung außerhalb der Transformationsleinwand anwenden und dann den skalierten Wert innerhalb der Leinwandtransformation verwenden. Also habe ich dies verwendet

\pgfmathsetmacro{\shift}{\Ac-\Bc}
\pgfmathsetmacro{\shifta}{200/(\hsize-24)*\shift}
\begin{scope}[transform canvas={xshift=\shifta cm}]

an Stelle von

\pgfmathsetmacro{\shift}{\Ac-\Bc}
\begin{scope}[transform canvas={xshift=\shift cm}]

und der Rest des Codes ist genau gleich.

verwandte Informationen