Referenzen erscheinen nicht im ersten Frame

Referenzen erscheinen nicht im ersten Frame

Ich bereite meine Präsentation mit Beamer vor. Während die Datei ausgeführt wird, erscheint in der Ausgabe insbesondere im Referenzrahmen (es gibt 93 Referenzen) im ersten Rahmen Referenz 1 und 2,3,4 verschwinden, während Referenz 5 bis 93 kontinuierlich in allen Rahmen erscheint. Bitte geben Sie mir die Lösung dafür.

Ich verwende den Code wie unten gezeigt.

\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}

\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

\end{enumerate}
\end{frame}   

Vollständiges Beispiel:

\documentclass[10pt]{beamer}
\usepackage{hyperref,times,graphicx,setspace}
\mode<presentation>
   {
    \usetheme{Warsaw}
%  \setbeamercovered{transparent}
    }
\usepackage{epsfig}
\usepackage[english]{babel}
%\usepackage[latin1]{inputenc}
%\usepackage{times}
%\usepackage[T1]{fontenc}
\usepackage{color}
\usepackage{pst-node}
\usepackage{epsfig,amsmath,amsthm,latexsym,amssymb,amsgen,graphicx}
\usepackage{amsthm}
\usepackage{beamerthemesplit}

\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\newtheorem{eg}[thm]{Example}
\newtheorem{ex}[thm]{Exercise}
\newtheorem{prob}{Problem}
\newtheorem{ob}[thm]{Observation}
\newtheorem{rk}[thm]{Remark}
\newtheorem{ill}{Illustration}
\newtheorem{con}{Conjecture}
\newtheorem{prop}{Proposition}
\theoremstyle{remark}
\newtheorem*{pf}{Proof}
\newtheorem*{pfc}{Proof ctd...}
\numberwithin{equation}{section}
%\newenvironment{daln}{$\arraycolsep=.2ex\begin{array}[t]{rl}}%
%{\end{array}$}
\setlength{\unitlength}{0.1mm}
\renewcommand{\baselinestretch}{1.2}

\title[XXXXXX]
{\it{\bf{XXXXXXXX}}}



\author[K.SRINIVASA RAO] % (optional, use only with lots of authors)
{ K.SRINIVASA RAO}
\institute[]
{\\RESEARCH GUIDE \vskip .5cm
{\large XXXX}


\subject{Ph.D Viva-Voce}



\beamerdefaultoverlayspecification{<+->}

\date{--- --,--}



\begin{document}


\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}

\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

\bibitem{7Beh}
M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.

\bibitem{8Beh}
M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.

\bibitem{9Beh}
M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.

\bibitem{10Benk}
Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.

\bibitem{11Berm}
J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.


\end{frame}
\end{document} 

Antwort1

Das Hauptproblem besteht darin \beamerdefaultoverlayspecification{<+->}, es einfach zu entfernen.

Einige kleinere Probleme/Anmerkungen:

  • Sie brauchen nicht hyperref, graphicx, colormit Beamer
  • Laden Sie nicht dasselbe Paket mehrmals, z . B. times, graphicx, amsthmusw.
  • fehlt }am Ende Ihres Instituts
  • fehlen\end{enumerate}

\documentclass[10pt]{beamer}

\usetheme{Warsaw}
\usepackage{beamerthemesplit}
\setbeamercovered{transparent}
\usepackage[english]{babel}


%\beamerdefaultoverlayspecification{<+->}

\setbeamertemplate{frametitle continuation}{}

\begin{document}

\begin{frame}[allowframebreaks]
  \frametitle{References:}
  \begin{enumerate}
        \bibitem{1Aki}
        J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

        \bibitem{2Alsp}
        B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

        \bibitem{3Alsp}
        B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

        \bibitem{4Anad}
        B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

        \bibitem{5Basa}
        M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

        \bibitem{6Beh}
        M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

        \bibitem{7Beh}
        M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.

        \bibitem{8Beh}
        M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.

        \bibitem{9Beh}
        M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.

        \bibitem{10Benk}
        Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.

        \bibitem{11Berm}
        J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.
    \end{enumerate}
\end{frame}

\end{document} 

Bildbeschreibung hier eingeben

verwandte Informationen