Ich bereite meine Präsentation mit Beamer vor. Während die Datei ausgeführt wird, erscheint in der Ausgabe insbesondere im Referenzrahmen (es gibt 93 Referenzen) im ersten Rahmen Referenz 1 und 2,3,4 verschwinden, während Referenz 5 bis 93 kontinuierlich in allen Rahmen erscheint. Bitte geben Sie mir die Lösung dafür.
Ich verwende den Code wie unten gezeigt.
\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}
\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.
\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.
\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.
\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.
\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products, arXiv:1104.4190v1 [math.co] (2011).
\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.
\end{enumerate}
\end{frame}
Vollständiges Beispiel:
\documentclass[10pt]{beamer}
\usepackage{hyperref,times,graphicx,setspace}
\mode<presentation>
{
\usetheme{Warsaw}
% \setbeamercovered{transparent}
}
\usepackage{epsfig}
\usepackage[english]{babel}
%\usepackage[latin1]{inputenc}
%\usepackage{times}
%\usepackage[T1]{fontenc}
\usepackage{color}
\usepackage{pst-node}
\usepackage{epsfig,amsmath,amsthm,latexsym,amssymb,amsgen,graphicx}
\usepackage{amsthm}
\usepackage{beamerthemesplit}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\newtheorem{eg}[thm]{Example}
\newtheorem{ex}[thm]{Exercise}
\newtheorem{prob}{Problem}
\newtheorem{ob}[thm]{Observation}
\newtheorem{rk}[thm]{Remark}
\newtheorem{ill}{Illustration}
\newtheorem{con}{Conjecture}
\newtheorem{prop}{Proposition}
\theoremstyle{remark}
\newtheorem*{pf}{Proof}
\newtheorem*{pfc}{Proof ctd...}
\numberwithin{equation}{section}
%\newenvironment{daln}{$\arraycolsep=.2ex\begin{array}[t]{rl}}%
%{\end{array}$}
\setlength{\unitlength}{0.1mm}
\renewcommand{\baselinestretch}{1.2}
\title[XXXXXX]
{\it{\bf{XXXXXXXX}}}
\author[K.SRINIVASA RAO] % (optional, use only with lots of authors)
{ K.SRINIVASA RAO}
\institute[]
{\\RESEARCH GUIDE \vskip .5cm
{\large XXXX}
\subject{Ph.D Viva-Voce}
\beamerdefaultoverlayspecification{<+->}
\date{--- --,--}
\begin{document}
\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}
\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.
\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.
\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.
\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.
\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products, arXiv:1104.4190v1 [math.co] (2011).
\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.
\bibitem{7Beh}
M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.
\bibitem{8Beh}
M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.
\bibitem{9Beh}
M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.
\bibitem{10Benk}
Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.
\bibitem{11Berm}
J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.
\end{frame}
\end{document}
Antwort1
Das Hauptproblem besteht darin \beamerdefaultoverlayspecification{<+->}
, es einfach zu entfernen.
Einige kleinere Probleme/Anmerkungen:
- Sie brauchen nicht
hyperref
,graphicx
,color
mit Beamer - Laden Sie nicht dasselbe Paket mehrmals, z . B.
times
,graphicx
,amsthm
usw. - fehlt
}
am Ende Ihres Instituts - fehlen
\end{enumerate}
\documentclass[10pt]{beamer}
\usetheme{Warsaw}
\usepackage{beamerthemesplit}
\setbeamercovered{transparent}
\usepackage[english]{babel}
%\beamerdefaultoverlayspecification{<+->}
\setbeamertemplate{frametitle continuation}{}
\begin{document}
\begin{frame}[allowframebreaks]
\frametitle{References:}
\begin{enumerate}
\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.
\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.
\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.
\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.
\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products, arXiv:1104.4190v1 [math.co] (2011).
\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.
\bibitem{7Beh}
M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.
\bibitem{8Beh}
M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.
\bibitem{9Beh}
M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.
\bibitem{10Benk}
Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.
\bibitem{11Berm}
J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.
\end{enumerate}
\end{frame}
\end{document}