Wie kann ich den Text nach oben verschieben und ihn in der ersten Zeile beginnen lassen?

Wie kann ich den Text nach oben verschieben und ihn in der ersten Zeile beginnen lassen?

Da ich neu darin bin, habe ich Probleme mit dem Textlayout und den Abbildungen. Wahrscheinlich, weil ich die Codes nicht richtig verwende und viele Gleichungen + Abbildungen verwende. Wie Sie auf dem Bild sehen, verschiebt sich der Text stark nach unten und ich weiß nicht, wie ich das beheben oder korrigieren kann.

\documentclass{article}        
\begin{document}
\usepackage{graphicx, wrapfig, amsmath}
\newpage
\begin{equation}
\begin{align}
\textrm{frequency}=$\omega$RC=1 \textrm {which is} R/2
\end{align}
\end{equation}

\begin{wrapfigure}{R}{0.3\textwidth}
\begin{center}
        \includegraphics[width=0.3\textwidth]{figure/resultat/impedance_p.PNG}
        \caption{Schematic fig. of cell used for impedance measurement (källa)}
        \label{fig:p}
 \end{center} 
\end{wrapfigure} 

\begin{wrapfigure}{L}{0.3\textwidth}
\begin{center}
        \includegraphics[width=0.3\textwidth]{figure/resultat/impedance_S.PNG}
        \caption{Schematic fig. of cell used for impedance measurement (källa)}
        \label{fig:s}
 \end{center} 
\end{wrapfigure} 


 For parallel resistance R and capacitance C circuit will give semi-circle at Z$^*$ plane, however it's possible to obtain two or three semi-circle at Z$^*$ complex plane. This observation will be due to the parallel boundary resistance R$_b$, boundary capacitance C$_b$ and grain-boundary resistance R$_g_b$ , grain-boundary capacitance C$_b_g$. It's important to understand that each point on spike or semi-circle correspond to specific frequency value, the reason why it's also important to scan a range of frequency in order to produce the graph. With one frequency measured value, it's impossible to distinguish if it's spike or semi-circle phenomenal. 

Problems could be obtained if the electrodes are broken or if they touch each other. For example if a vertical spike is observed at low frequencies in the Z$^*$ complex plane, this could be explained as presence of a large capacitance in the series circuit. In other words, the electronic conductivity in the solid electrolyte is small compared to the ionic magnitude of the electrolyte.

[The semi-circle result could be explained as following (fig 13,27), either the equivalent circuit doesn't containing a large series capacitor or capacitance is observed at the Z$^*$ complex plane] 


In order to understand the plotted complex plane data, the measurement are reading several corresponding to series resistans R$_s$ and series capacitance C$_s$. These measurement could be converted and calculated to impedance using this equation:

Bildbeschreibung hier eingeben

Antwort1

Sie sollten eine einzelne wrapfigureUmgebung verwenden:

\documentclass{article}        
\usepackage{graphicx, wrapfig}

\usepackage{lipsum}

\begin{document}

\begin{wrapfigure}{L}{0.3\textwidth}
\centering

\includegraphics[width=0.3\textwidth]{example-image-9x16}
\caption{Schematic fig. of cell used for impedance measurement (källa)\label{fig:p}}

\bigskip

\includegraphics[width=0.3\textwidth]{example-image-9x16}
\caption{Schematic fig. of cell used for impedance measurement (källa)\label{fig:s}}

\end{wrapfigure} 

\lipsum

\end{document}

Bildbeschreibung hier eingeben

verwandte Informationen