Ich verwende den unten gezeigten Code, um eine Frage Schritt für Schritt zu beschreiben, aber wenn ich einen Bruch in einem anderen Bruch habe, wird dieser klein und schwer zu lesen. Ich möchte, dass der Bruch innerhalb die gleiche Größe wie die anderen hat und klar, aber nicht zu überladen ist.
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
&=\frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b} - \frac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\frac{\sin a}{\cos a} + \frac{\sin b}{\cos b}}{1 - \frac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}
Antwort1
Sie können für verschachtelte Brüche verwenden \cfrac
. Dadurch sind die „oberen“ Nenner jedoch zu nah an der Hauptbruchlinie, sodass man dies durch Hinzufügen eines Phantombuchstabens mit Unterlängen ausgleichen kann. Für die „unteren“ Zähler ist keine Kompensation erforderlich, wenn Sie \cfrac
(nicht \dfrac
) verwenden.
Eine andere Möglichkeit wäre, den \mfrac
Befehl (mittelgroßer Bruch – 80 % von \displaystyle) von zu verwenden nccmath
, damit die kleineren Brüche noch lesbar sind. Hier ist ein Beispiel für beide Methoden:
\documentclass{article}
\usepackage{amsmath, nccmath}
\begin{document}
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\[0.5ex]
&=\frac{\cfrac{\sin a \cos b}{\cos a \cos b} + \cfrac{\cos a \sin b}{\cos a \cos b\vphantom{g}}}{\cfrac{\cos a \cos b}{\cos a \cos b} - \cfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\cfrac{\sin a}{\cos a} + \cfrac{\sin b}{\cos b \vphantom{g}}}{1 - \cfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}\medskip
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\[0.5ex]
&=\frac{\mfrac{\sin a \cos b}{\cos a \cos b} + \mfrac{\cos a \sin b}{\cos a \cos b\vphantom{g}}}{\mfrac{\cos a \cos b}{\cos a \cos b} - \mfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\mfrac{\sin a}{\cos a} + \mfrac{\sin b}{\cos b\vphantom{g}}}{1 - \mfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}
\end{document}
Antwort2
Um die kleinen ( \textstyle
) Gleichungen zu korrigieren, fügen Sie, wie ich in einem Kommentar sagte, \displaystyle
vor dem kleinen Bruch oder (mit amsmath
) ein \dfrac
. Dies behebt jedoch nicht die schmale vertikale Lücke zwischen wirklich großen Gleichungen.
Mit einem TABstack lässt sich der Abstand zwischen den Gleichungen einfach angeben. Da die Gleichung(en) nicht nummeriert sind und die Höhe jeder Gleichung unterschiedlich ist, wähle ich hier ein \alignShortstack
statt eines\alignCenterstack
\documentclass{article}
\usepackage{amsmath,tabstackengine}
\TABstackMath
\TABstackMathstyle{\displaystyle}
\begin{document}
\[
\setstackgap{S}{16pt}
\alignShortstack{
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
&=\frac{\dfrac{\sin a \cos b}{\cos a \cos b} + \dfrac{\cos a \sin b}{\cos a \cos b}}{\dfrac{\cos a \cos b}{\cos a \cos b} - \dfrac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\dfrac{\sin a}{\cos a} + \dfrac{\sin b}{\cos b}}{1 - \dfrac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}}
\]
\end{document}
Antwort3
durch die Verwendung von amsmath
Handbüchern wurde der vertikale Abstand zwischen den Zeilen der mathematischen Gleichung vergrößert:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}
&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b} \\
\tan(a+b)
&=\frac{\sin a \cos b + \cos a \sin b\mathstrut}{\cos a \cos b - \sin a \sin b} \\[1ex]
&=\frac{\dfrac{\sin a \cos b}{\cos a \cos b\mathstrut} + \dfrac{\cos a \sin b}{\cos a \cos b}}
{\dfrac{\cos a \cos b}{\cos a \cos b} - \dfrac{\sin a \sin b}{\cos a \cos b}}\\[1ex]
&=\frac{\dfrac{\sin a}{\cos a} + \dfrac{\sin b\mathstrut}{\cos b}}
{1 - \dfrac{\sin a \sin b}{\cos a \cos b}} \\[1ex]
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}
\end{document}
bearbeiten:Nun gilt der Kommentar von Barbara Beeton.