Ich habe etwa eine halbe Seite Platz zwischen meinen beiden Grafiken: Ich möchte, dass sie näher beieinander liegen. Hier ist ein MWE:
\documentclass[notitlepage]{report}
\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry}
\usepackage{enumitem}
\usepackage{titling}
\usepackage{lipsum}
\usepackage[backend=biber]{biblatex}
\usepackage{graphicx}
\usepackage{placeins}
\usepackage{subcaption}
\begin{document}
\begin{figure}
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{linear.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{exponential.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Small $x[0]$}
\addtolength{\textfloatsep}{-0.2in}
\end{figure}
\FloatBarrier
This behavior could be due to $y'[t]$ decreasing in value quickly with large $y[0], \delta_{1}$, and $\delta_{2}$ and $x'[t]$ then increasing in value as the $-\delta_{2}y$ decreases in absolute value while the denominator, $1-\delta_{1}$ is small, causing $x[t]$ to increase faster.
For $x_[0] = .45$, we see similar behavior as we adjust our deltas, but $x[t]$ is monotone decreasing.
\begin{figure}
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{LowD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{HigherD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\setlength{\belowcaptionskip}{-10pt}
\end{subfigure}
\caption{Large $x[0]$}
\end{figure}
\FloatBarrier
\end{document}
Wie kann ich den Platz in der Mitte meiner Seite einsparen?
Antwort1
Sie können erzwingen, dass die zweite Ziffer nah am Text steht, indem Sie die !htbp
Option - hinzufügen.
\documentclass[notitlepage]{report}
\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry}
\usepackage{enumitem}
\usepackage{titling}
\usepackage{lipsum}
\usepackage[backend=biber]{biblatex}
\usepackage{graphicx}
\usepackage{placeins}
\usepackage{subcaption}
\usepackage{setspace}
\renewcommand{\topfraction}{0.45}
\begin{document}
\begin{figure}
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Small $x[0]$}
\addtolength{\textfloatsep}{-0.2in}
\end{figure}
\FloatBarrier
This behavior could be due to $y'[t]$ decreasing in value quickly with large $y[0], \delta_{1}$, and $\delta_{2}$ and $x'[t]$ then increasing in value as the $-\delta_{2}y$ decreases in absolute value while the denominator, $1-\delta_{1}$ is small, causing $x[t]$ to increase faster.
For $x_[0] = .45$, we see similar behavior as we adjust our deltas, but $x[t]$ is monotone decreasing.
\begin{figure}[!htbp]
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\setlength{\belowcaptionskip}{-10pt}
\end{subfigure}
\caption{Large $x[0]$}
\end{figure}
\FloatBarrier
\end{document}
Antwort2
- Sie müssen nicht verwenden
\FloatBarrier
- zu schweben
figure
fügen Sie eine Option für die Platzierung hinzu[ht]
(wie auch @Jan in vorgeschlagen hatseine Antwort) - reduzieren Sie die Breite
subcption
von0.5
beispielsweise0.4
- für den Abstand zwischen den Unterfiguren verwenden Sie
\hfil
- Entfernen
\setlength{\belowcaptionskip}{-10pt}
ausfigure
oder Verschieben in die Dokumentpräambel
\documentclass[notitlepage, demo]{report}% in real document delete option demo
\usepackage[margin=1in]{geometry}
\usepackage{enumitem}
\usepackage{titling}
\usepackage{lipsum}
\usepackage[backend=biber]{biblatex}
\usepackage{graphicx}
\usepackage{placeins}
\usepackage{subcaption}
\begin{document}
\begin{figure}[ht]
\centering
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{linear.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
\hfil
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{exponential.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Small $x[0]$}
\end{figure}
%\FloatBarrier
This behavior could be due to $y'[t]$ decreasing in value quickly with large $y[0], \delta_{1}$, and $\delta_{2}$ and $x'[t]$ then increasing in value as the $-\delta_{2}y$ decreases in absolute value while the denominator, $1-\delta_{1}$ is small, causing $x[t]$ to increase faster.
For $x_[0] = .45$, we see similar behavior as we adjust our deltas, but $x[t]$ is monotone decreasing.
\begin{figure}[ht]
\centering
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{LowD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}
\hfil
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{HigherD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Large $x[0]$}
\end{figure}
%\FloatBarrier
\end{document}