Problem bei der Konvertierung von Standalone in Artikel

Problem bei der Konvertierung von Standalone in Artikel

Ich habe das folgende Flussdiagramm unter der Dokumentklasse „Standalone“ gezeichnet, aber das Originaldokument, in das es eingefügt werden soll, hat die Dokumentklasse „Artikel“. Wenn ich den Code also in mein Hauptdokument einfüge, schrumpft das Flussdiagramm und wird im Vergleich zum Originaldiagramm zu klein. Ich möchte, dass das Flussdiagramm eine ganze A4-Seite füllt.

\documentclass[border=10pt]{standalone}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\begin{document}
    \begin{tikzpicture}[>=latex']
        \tikzset{block/.style= {draw, rectangle, align=center,minimum width=3.3cm,minimum height=.1cm},
        }
        \node [block,text width=2cm]  (start) {\fontsize{3}{6}\selectfont Feynman Integral};
        \node [block,text width=2cm, below = .2cm of start] (Z1){\fontsize{3}{6}\selectfont Schwinger  Parametrization};
        \node [coordinate, below = .3cm of Z1] (ADL){};
        \node [coordinate, left = 2cm of ADL] (AUL){};
        \node [coordinate, below = .3cm of Z1] (BUL){};
        \node [coordinate, right = 2cm of BUL] (BDL){};

        \node [block,text width=2cm, below = .2cm of AUL] (A1){{\fontsize{2.4}{3}\selectfont Original Method of Brackets}};
         \node [block,text width=2cm, below = .2cm of BDL] (A2){{\fontsize{2.4}{3}\selectfont Modified Method of Brackets}};
        \node [block,text width=2.5cm, below = .2cm of A1,align=center] (B1){{\fontsize{2.4}{6}\selectfont \textbf{Rule 1}: Expanding exponentials \\
        \(e^{-A} = \sum_{n=0}^{\infty}\frac{(-1)^n A^n}{\Gamma(1+n)}\)}};
        \node [block,text width=2.6cm, below = .2cm of A2] (B2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 1}: Expanding Exponentials\\
         \(e^{-A} = \oint \frac{dx}{2 \pi i} A^{-z}\Gamma(-z)\)}};
        \node [block,text width=2cm,  below= .2cm of B2] (C2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
            (a_1 + a_2 +...+ a_r)^{\alpha}= \oint\frac{dz_1}{2 \pi i}...\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\\langle -\alpha+z_1+...+z_r\rangle\frac{\Gamma(-z_1)...\Gamma(-z_2)}{\Gamma(-\alpha)}
        \end{align*}}};
         \node [block,text width=2.5cm, below = .2cm of B1] (C1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
            (a_1 + a_2 +...+ a_r)^{\alpha}= \sum_{m_1,...,m_r} \phi_{m_1,...,m_r} \\a_{1}^{m_1}...a_{r}^{m_r}\frac{\langle -\alpha+m_1+...+m_r\rangle}{\Gamma(-\alpha)}
        \end{align*}}};
         \node [block,text width=2cm, below = .2cm of C1] (D1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
         \begin{align*}
          \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
         \end{align*}}};
         \node [block,text width=2cm, below = .2cm of C2] (D2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
         \begin{align*}
          \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
         \end{align*}}};
 \node [block,text width=2.5cm, below = .2cm of D1] (E1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket\\
 \vspace{.3cm}An expression of the form
         \begin{align*}
          \sum_{n_1,...,n_r}\phi_{1,...,r}f(n_1,...,n_r)\langle a_{11}n_{1}+...+a_{1r}n_{r}+c{1}\rangle\\\times \langle a_{s1}n_{1}+...+a_{sr}n_{r}+c{1}\rangle
         \end{align*}
       as\(\frac{1}{|detA|}f(n_{1}^{*},...,n_{r}^{*})\Gamma(-n_{1}^{*})...\Gamma(-n_{r}^{*})\)}};
 \node [block,text width=2.5cm, below = .2cm of D2] (E2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket-\\
 \vspace{.3cm}An expression of the form
         \begin{align*}
          \oint\frac{dz_{1}}{2\pi i}...\oint\frac{dz_{1}}{2\pi i}f(z_{1},...,z_{r})\langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle\\\times \langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle
         \end{align*}
         as \(\frac{1}{|detA|}f(z_{1}^{*},...,z_{r}^{*})\)}};
        \path[draw, ->]
            (start)edge(Z1)
           (Z1)--(ADL)
            (ADL)--(AUL)
            (AUL)edge(A1)
            (A1) edge (B1)
            (B1)edge(C1)
            (C1)edge(D1)
            (D1)edge(E1)
            (Z1)--(BUL)
            (BUL)--(BDL)
            (BDL)edge(A2)
            (A2) edge (B2)
            (B2)edge(C2)
            (C2)--(D2)
            (D2)edge(E2)
            ;
    \end{tikzpicture}
\end{document}

Antwort1

Um standalonedie Dokumentklasse in zu konvertieren, articlemüssen Sie nur standalonedurch ersetzen article. Das Bild wird zentriert auf der Seite angezeigt, eingeschlossen in \begin{center}... oder in einer Float-Umgebung \end{center}platziert :figure

\documentclass]{article}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}

\begin{document}
\begin{figure}[ht]
\centering
% < your image code>
\end{figure}
\end{document}

Ihr Diagramm kann jedoch als Baum gezeichnet werden. Wenn Sie das forestentsprechende Paket verwenden und Makros und mittelgroße Brüche () berücksichtigen, mathtoolskönnen mathclapSie nccmathin \mfracKnoten () eine größere Schriftgröße verwenden \scriptsizeund einen kürzeren und klareren Code erstellen:

\documentclass{article}
\usepackage{mathtools, nccmath}
\usepackage[edges]{forest}
\usetikzlibrary{arrows.meta}

%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}

\begin{document}
\begin{center} % or use \begin{figure}[ht]\centering
\setlength\abovedisplayskip{2pt}%
    \begin{forest}
for tree = {
    draw,
    text width=54mm,
    font=\scriptsize,
    %
    grow = south,
    forked edge,  
    s sep = 6mm,  
    l sep = 4mm,  
 fork sep = 2mm,
if level<= 2{text centered}{},
tier/.option = level, % for aligning nodes to levels  
    %
edge = {-{Stealth[length=3pt]}, semithick},
            }
[Feynman Integra
    [Schwinger  Parametrization
%%%% left branch
        [Original Method of Brackets
            [\textbf{Rule 1}: Expanding exponentials
             \[{e^{-A} = \sum_{n=0}^{\infty}\mfrac{(-1)^n A^n}{\Gamma(1+n)}}\]   
                [\textbf{Rule 2}: Expanding Multinomials
                    {\begin{multline*}
                        (a_1 + a_2 +\dotsm+ a_r)^{\alpha}= \\
                            \sum_{\mathclap{m_1,\dotsc,m_r}} \phi_{m_1,\dotsc,m_r}
                            a_{1}^{m_1}\dotsm a_{r}^{m_r}\\
                                \mfrac{\langle -\alpha+m_1+\dotsm+m_r\rangle}{\Gamma(-\alpha)}
                    \end{multline*}} 
                    [\textbf{Rule 3}: Introduce Bracket
                         \[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle}    \]  
                        [\textbf{Rule 4}: Eliminate Bracket\\
                      An expression of the form
                             {\begin{multline*}
                        \sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
                            \langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
                               \times \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
                             \end{multline*}}
                        as {$\mfrac{1}{|detA|}f(n_{1}^{*},\dotsc,n_{r}^{*})  \Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{r}^{*})$}
                        ]
                    ]
                ]
            ]
        ]
        [Original Method of Brackets
            [\textbf{Rule 1}: Expanding Exponentials
                {\begin{multline*}
        (a_1 + a_2 +\dotsm+ a_r)^{\alpha}\\ 
        = \oint\frac{dz_1}{2 \pi i}\dotsm\oint\frac{dz_r}{2\pi i} a_{1}^{z_1}\dotsm a_{r}^{z_r}   \\
            \langle - \alpha+z_1 + \dotsm +z_r\rangle\cdot
                          \frac{\Gamma(-z_1)\dotsm \Gamma(-z_2)}{\Gamma(-\alpha)}
                \end{multline*}}
                [\textbf{Rule 2}: Expanding Multinomials
                    {\begin{multline*}
                (a_1 + a_2 +\dotsm + a_r)^{\alpha} = \\
                \oint\frac{dz_1}{2 \pi i}\dots\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\
                \langle -\alpha+z_1+\dotsm + z_r\rangle\frac{\Gamma(-z_1)\dotsm\Gamma(-z_2)}{\Gamma(-\alpha)}
                    \end{multline*}}
                    [\textbf{Rule 3}: Introduce Bracket
                     \[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle}  \]
                        [\textbf{Rule 4}: Eliminate Bracket\\
                      An expression of the form
                             {\begin{multline*}
                        \sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
                            \langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
                               \times \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
                             \end{multline*}}
                        as {$\mfrac{1}{|detA|}f(n_{1}^{*},\dotsc,n_{r}^{*})  \Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{r}^{*})$}
                        ]                     
                    ]
                ]
            ]
        ]
    ]
]
    \end{forest}
\end{center} % or use `\end{figure}
\end{document}

Bildbeschreibung hier eingeben

(rote Linien zeigen Textränder an)

Antwort2

Ihre Ausgabe ist tatsächlich sehr klein. \scalebox{scale}{content}Sie können die Größe Ihres Diagramms anpassen.

\documentclass{article}
\usepackage[margin=2cm]{geometry}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\begin{document}
\begin{center}
\scalebox{2}{
    \begin{tikzpicture}[>=latex']
\tikzset{block/.style= {draw, rectangle, align=center,minimum width=3.3cm,minimum height=.1cm},
}
\node [block,text width=2cm]  (start) {\fontsize{3}{6}\selectfont Feynman Integral};
\node [block,text width=2cm, below = .2cm of start] (Z1){\fontsize{3}{6}\selectfont Schwinger  Parametrization};
\node [coordinate, below = .3cm of Z1] (ADL){};
\node [coordinate, left = 2cm of ADL] (AUL){};
\node [coordinate, below = .3cm of Z1] (BUL){};
\node [coordinate, right = 2cm of BUL] (BDL){};

\node [block,text width=2cm, below = .2cm of AUL] (A1){{\fontsize{2.4}{3}\selectfont Original Method of Brackets}};
\node [block,text width=2cm, below = .2cm of BDL] (A2){{\fontsize{2.4}{3}\selectfont Modified Method of Brackets}};
\node [block,text width=2.5cm, below = .2cm of A1,align=center] (B1){{\fontsize{2.4}{6}\selectfont \textbf{Rule 1}: Expanding exponentials \\
        \(e^{-A} = \sum_{n=0}^{\infty}\frac{(-1)^n A^n}{\Gamma(1+n)}\)}};
\node [block,text width=2.6cm, below = .2cm of A2] (B2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 1}: Expanding Exponentials\\
        \(e^{-A} = \oint \frac{dx}{2 \pi i} A^{-z}\Gamma(-z)\)}};
\node [block,text width=2cm,  below= .2cm of B2] (C2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
        (a_1 + a_2 +...+ a_r)^{\alpha}= \oint\frac{dz_1}{2 \pi i}...\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\\langle -\alpha+z_1+...+z_r\rangle\frac{\Gamma(-z_1)...\Gamma(-z_2)}{\Gamma(-\alpha)}
        \end{align*}}};
\node [block,text width=2.5cm, below = .2cm of B1] (C1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
        (a_1 + a_2 +...+ a_r)^{\alpha}= \sum_{m_1,...,m_r} \phi_{m_1,...,m_r} \\a_{1}^{m_1}...a_{r}^{m_r}\frac{\langle -\alpha+m_1+...+m_r\rangle}{\Gamma(-\alpha)}
        \end{align*}}};
\node [block,text width=2cm, below = .2cm of C1] (D1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
        \begin{align*}
        \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
        \end{align*}}};
\node [block,text width=2cm, below = .2cm of C2] (D2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
        \begin{align*}
        \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
        \end{align*}}};
\node [block,text width=2.5cm, below = .2cm of D1] (E1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket\\
        \vspace{.3cm}An expression of the form
        \begin{align*}
        \sum_{n_1,...,n_r}\phi_{1,...,r}f(n_1,...,n_r)\langle a_{11}n_{1}+...+a_{1r}n_{r}+c{1}\rangle\\\times \langle a_{s1}n_{1}+...+a_{sr}n_{r}+c{1}\rangle
        \end{align*}
        as\(\frac{1}{|detA|}f(n_{1}^{*},...,n_{r}^{*})\Gamma(-n_{1}^{*})...\Gamma(-n_{r}^{*})\)}};
\node [block,text width=2.5cm, below = .2cm of D2] (E2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket-\\
        \vspace{.3cm}An expression of the form
        \begin{align*}
        \oint\frac{dz_{1}}{2\pi i}...\oint\frac{dz_{1}}{2\pi i}f(z_{1},...,z_{r})\langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle\\\times \langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle
        \end{align*}
        as \(\frac{1}{|detA|}f(z_{1}^{*},...,z_{r}^{*})\)}};
\path[draw, ->]
(start)edge(Z1)
(Z1)--(ADL)
(ADL)--(AUL)
(AUL)edge(A1)
(A1) edge (B1)
(B1)edge(C1)
(C1)edge(D1)
(D1)edge(E1)
(Z1)--(BUL)
(BUL)--(BDL)
(BDL)edge(A2)
(A2) edge (B2)
(B2)edge(C2)
(C2)--(D2)
(D2)edge(E2)
;
\end{tikzpicture}
}
\end{center}
\end{document}

Die von Ihnen gewählte Schriftgröße lässt die Buchstaben jedoch immer noch klein erscheinen. Erwägen Sie die Verwendung einer relativen Schriftgröße (dieGröße ändernPaket ist eine gute Option).

verwandte Informationen