
Ich habe dieses Beispiel 2008 erstellt und es wurde kompiliert (beispiel.net).
Ich habe versucht, den Code neu zu kompilieren, aber ohne Erfolg, und ich kann den Fehler nicht finden.
Jetzt sind einige Knoten undefiniert. Ich habe die Zeilen mit Problem kommentiert
\documentclass[]{article}
\usepackage{tikz}
\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
\begin{document}
% l' unite
\newcommand{\myunit}{1 cm}
\tikzset{
node style sp/.style={draw,circle,minimum size=\myunit},
node style ge/.style={circle,minimum size=\myunit},
arrow style mul/.style={draw,sloped,midway,fill=white},
arrow style plus/.style={midway,sloped,fill=white},
}
\begin{tikzpicture}[>=latex]
% les matrices
\matrix (A) [matrix of math nodes,%
nodes = {node style ge},%
left delimiter = (,%
right delimiter = )] at (0,0)
{%
a_{11} & a_{12} & \ldots & a_{1p} \\
\node[node style sp] {a_{21}};%
& \node[node style sp] {a_{22}};%
& \ldots%
& \node[node style sp] {a_{2p}}; \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{np} \\
};
\node [draw,below=10pt] at (A.south)
{ $A$ : \textcolor{red}{$n$ rows} $p$ columns};
\matrix (B) [matrix of math nodes,%
nodes = {node style ge},%
left delimiter = (,%
right delimiter =)] at (6*\myunit,6*\myunit)
{%
b_{11} & \node[node style sp] {b_{12}};%
& \ldots & b_{1q} \\
b_{21} & \node[node style sp] {b_{22}};%
& \ldots & b_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
b_{p1} & \node[node style sp] {b_{p2}};%
& \ldots & b_{pq} \\
};
\node [draw,above=10pt] at (B.north)
{ $B$ : $p$ rows \textcolor{red}{$q$ columns}};
% matrice résultat
\matrix (C) [matrix of math nodes,%
nodes = {node style ge},%
left delimiter = (,%
right delimiter = )] at (6*\myunit,0)
{%
c_{11} & c_{12} & \ldots & c_{1q} \\
c_{21} & \node[node style sp,red] {c_{22}};%
& \ldots & c_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \ldots & c_{nq} \\
};
% les fleches
% \draw[blue] (A-2-1.north) -- (C-2-2.north);
% \draw[blue] (A-2-1.south) -- (C-2-2.south);
% \draw[blue] (B-1-2.west) -- (C-2-2.west);
% \draw[blue] (B-1-2.east) -- (C-2-2.east);
% \draw[<->,red](A-2-1) to[in=180,out=90]
% node[arrow style mul] (x) {$a_{21}\times b_{12}$} (B-1-2);
% \draw[<->,red](A-2-2) to[in=180,out=90]
% node[arrow style mul] (y) {$a_{22}\times b_{22}$} (B-2-2);
% \draw[<->,red](A-2-4) to[in=180,out=90]
% node[arrow style mul] (z) {$a_{2p}\times b_{p2}$} (B-4-2);
% \draw[red,->] (x) to node[arrow style plus] {$+$} (y)%
% to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (z)%
% to (C-2-2.north west);
\node [draw,below=10pt] at (C.south)
{$ C=A\times B$ : \textcolor{red}{$n$ rows} \textcolor{red}{$q$ columns}};
\end{tikzpicture}
\end{document}
Jetzt bekomme ich
Mit der ersten kommentierten Zeile
Latex Error: ./matrix-multiplication.tex:66 Package pgf Error: No shape named `A-2-1' is known.
Latex Error: ./matrix-multiplication.tex:66 Package pgf Error: No shape named `C-2-2' is known.
In 2008
Antwort1
Ich bin mir nicht sicher, ob es wirklich unterstützt wird, \node
Befehle in ein matrix of nodes
oder zu setzen matrix of math nodes
. Wie auch immer, Sie scheinen es zu verwenden, um den Knoten Stile zu geben. Es gibt einen einfacheren Weg. Anstatt
\node[node style sp] {a_{22}};
Sag nur
|[node style sp]| a_{22}
Dies ist die im aktuellen Handbuch (v3.1.5) dokumentierte Methode und funktioniert.
\documentclass[]{article}
\usepackage{tikz}
\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
\begin{document}
% l' unite
\newcommand{\myunit}{1 cm}
\tikzset{
node style sp/.style={draw,circle,minimum size=\myunit},
node style ge/.style={circle,minimum size=\myunit},
arrow style mul/.style={draw,sloped,midway,fill=white},
arrow style plus/.style={midway,sloped,fill=white},
}
\begin{tikzpicture}[>=latex]
% les matrices
\matrix (A) [matrix of math nodes,%
nodes = {node style ge},%
left delimiter = (,%
right delimiter = )] at (0,0)
{%
a_{11} & a_{12} & \ldots & a_{1p} \\
|[node style sp]| a_{21}%
& |[node style sp]| a_{22}%
& \ldots%
& |[node style sp]| a_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{np} \\
};
\node [draw,below=10pt] at (A.south)
{ $A$ : \textcolor{red}{$n$ rows} $p$ columns};
\matrix (B) [matrix of math nodes,%
nodes = {node style ge},%
left delimiter = (,%
right delimiter =)] at (6*\myunit,6*\myunit)
{%
b_{11} & |[node style sp]| b_{12}%
& \ldots & b_{1q} \\
b_{21} & |[node style sp]| b_{22}%
& \ldots & b_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
b_{p1} & |[node style sp]| b_{p2}%
& \ldots & b_{pq} \\
};
\node [draw,above=10pt] at (B.north)
{ $B$ : $p$ rows \textcolor{red}{$q$ columns}};
% matrice résultat
\matrix (C) [matrix of math nodes,%
nodes = {node style ge},%
left delimiter = (,%
right delimiter = )] at (6*\myunit,0)
{%
c_{11} & c_{12} & \ldots & c_{1q} \\
c_{21} & |[node style sp,red]| c_{22}%
& \ldots & c_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \ldots & c_{nq} \\
};
% les fleches
\draw[blue] (A-2-1.north) -- (C-2-2.north);
\draw[blue] (A-2-1.south) -- (C-2-2.south);
\draw[blue] (B-1-2.west) -- (C-2-2.west);
\draw[blue] (B-1-2.east) -- (C-2-2.east);
\draw[<->,red](A-2-1) to[in=180,out=90]
node[arrow style mul] (x) {$a_{21}\times b_{12}$} (B-1-2);
\draw[<->,red](A-2-2) to[in=180,out=90]
node[arrow style mul] (y) {$a_{22}\times b_{22}$} (B-2-2);
\draw[<->,red](A-2-4) to[in=180,out=90]
node[arrow style mul] (z) {$a_{2p}\times b_{p2}$} (B-4-2);
\draw[red,->] (x) to node[arrow style plus] {$+$} (y)%
to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (z)%
to (C-2-2.north west);
\node [draw,below=10pt] at (C.south)
{$ C=A\times B$ : \textcolor{red}{$n$ rows} \textcolor{red}{$q$ columns}};
\end{tikzpicture}
\end{document}