
Antwort1
Gern geschehen nochmals ... und jetzt bin ich mit Ihrem Beispiel fertig.
\documentclass[a4paper,12pt]{article}
\usepackage{amsmath,amssymb}
\begin{document}
\[
\begin{aligned}
\int_{\Omega}\lvert\delta^{*}(x', X_{\infty})\rvert\, dP& \leq \liminf_{m\to\infty} \int_{\Omega} \biggl|\frac 1m \sum^{m}_{i=1}\delta^{*}(x', Y_{j})\biggr|\, dP \\
& \leq \liminf_{m\to\infty} \frac 1m \sum^{m}_{i=1} \int_{\Omega} \lvert\delta^{*}(x', Y_{j})\rvert\, dP\\
& \leq \sup_{m\geq 1}\int_{\Omega} \lvert\delta^{*}(x', Y_{m})\rvert\, dP \\
& \leq \sup_{n\geq 1}\int_{\Omega} \lvert\delta^{*}(x', X_{n})\rvert\, dP <+\infty
\end{aligned}
\]
\end{document}
Antwort2
Laden Sie das Paket amsmath in die Präambel und geben Sie etwas wie Folgendes ein:
\begin{align}
\int_{\Omega} |\delta^{*}(x^{\prime},X_{\infty})|dP &\leq \underset{m \to \infty}{\text{lim inf}} \int_{\Omega} | \frac{1}{m} \sum_{j=1}^{m} \delta^{*}(x^{\prime}, Y_j )| dP \nonumber \\
&\leq \cdots
\end{align}
Wobei ich Punkte für die Teile geschrieben habe, die Sie aus der von mir geschriebenen Zeile ableiten können.
Antwort3
Nur der Abwechslung halber ist hier eine Lösung, die eine split
Umgebung in eine nicht nummerierte angezeigte Gleichung einbettet. Sie definiert außerdem 3 Makros – \abs
, \dstar
, und \intOm
–, um die Eingabe wiederholt vorkommender Ausdrücke zu vereinfachen.
Insgesamt ist das Ergebnis (wenig überraschend!) sehr ähnlich zu dem inSebastianos Lösung.
\documentclass{article}
\usepackage{mathtools} % for '\DeclarePairedDelimiter' macro
\DeclarePairedDelimiter\abs\lvert\rvert
\newcommand\dstar[1]{\delta^*\mkern-2mu(x',#1)}
\newcommand\intOm{\int_{\Omega}}
\begin{document}
\[
\begin{split}
\intOm \abs{\dstar{X_\infty}} \,dP
&\le \liminf_{m\to\infty} \intOm \abs[\bigg]{ \frac{1}{m} \sum_{j=1}^\infty \dstar{Y_j}} \,dP \\
&\le \liminf_{m\to\infty} \frac{1}{m} \sum_{j=1}^\infty \intOm \abs{\dstar{Y_j}} \,dP\\
&\le \sup_{m\ge1} \intOm \abs{\dstar{Y_m}} \,dP \\
&\le \sup_{n\ge1} \intOm \abs{\dstar{X_n}} \,dP < +\infty
\end{split}
\]
\end{document}