Textbf in Dollarzeichen in Tabellenform (LaTeX)

Textbf in Dollarzeichen in Tabellenform (LaTeX)

Ich verwende seit einiger Zeit LaTeX Overleaf (overleaf.com) und habe versucht, eine Trigonometrietabelle zu erstellen. In der ersten Zeile der Tabelle habe ich versucht, das Alpha in der ersten Zelle fett zu machen, aber wenn ich es innerhalb der Dollarzeichen platzierte, verursachte dies viele Fehler und stürzte den PDF-Konverter ab. Wenn ich es außerhalb der Dollarzeichen platzierte, \textbfwurde das Alpha nicht fett gemacht. Kann mir bitte jemand helfen, dieses Problem zu beheben? Danke! Mein Code befindet sich unter diesem Absatz.

\begin{tabular}{||c|c|c|c||c|c|c||}
\hline
\hline
$\textbf{\alpha}$ &sin($\alpha$) &cos($\alpha$) &tan($\alpha$) &cosec($\alpha$) &sec($\alpha$) &cot($\alpha$)\\
\hline
\hline
\textbf{0}$^\circ$ & $\textbf{0}$ &$\textbf{1}$ &$\textbf{0}$ &\textbf{undefined} &$\textbf{1}$ &\textbf{undefined}\\
\hline
\hline
$15^\circ$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$\frac{\sqrt{6}+\sqrt{2}}{4}$ &$2-\sqrt{3}$ &$\sqrt{6}+\sqrt{2}$ &$\sqrt{6}-\sqrt{2}$ &$2+\sqrt{3}$\\
\hline
$30^\circ$ &$\frac{1}{2}$ &$\frac{\sqrt{3}}{2}$ &$\frac{\sqrt{3}}{3}$ &$2$ &$\frac{2\sqrt{3}}{3}$ &$\sqrt{3}$\\
\hline
$45^\circ$ &$\frac{\sqrt{2}}{2}$ &$\frac{\sqrt{2}}{2}$ &$1$ &$\sqrt{2}$ &$\sqrt{2}$ &$1$\\
\hline
$60^\circ$ &$\frac{\sqrt{3}}{2}$ &$\frac{1}{2}$ &$\sqrt{3}$ &$\frac{2\sqrt{3}}{3}$ &$2$ &$\frac{\sqrt{3}}{3}$\\
\hline
$75^\circ$ &$\frac{\sqrt{6}+\sqrt{2}}{4}$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$2+\sqrt{3}$ &$\sqrt{6}-\sqrt{2}$ &$\sqrt{6}+\sqrt{2}$ &$2-\sqrt{3}$\\
\hline
\hline
$90^\circ$ &$1$ &$0$ &undefined &$1$ &undefined &$0$\\
\hline
\hline
$105^\circ$ &$\frac{\sqrt{6}+{\sqrt{2}}}{4}$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$-2-\sqrt{3}$ &$\sqrt{6}-\sqrt{2}$ &$-\sqrt{6}-\sqrt{2}$ &$\sqrt{3}-2$\\
\hline
$120^\circ$ &$\frac{\sqrt{3}}{2}$ &$-\frac{1}{2}$ &$-\sqrt{3}$ &$\frac{2\sqrt{3}}{3}$ &$-2$ &$-\frac{\sqrt{3}}{3}$\\
\hline
$135^\circ$ &$\frac{\sqrt{2}}{2}$ &$-\frac{\sqrt{2}}{2}$ &$-1$ &$\sqrt{2}$ &$-\sqrt{2}$ &$-1$\\
\hline
$150^\circ$ &$\frac{1}{2}$ &$-\frac{\sqrt{3}}{2}$ &$-\frac{\sqrt{3}}{3}$ &$2$ &$-\frac{2\sqrt{3}}{3}$ &$-\sqrt{3}$\\
\hline
$165^\circ$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$\sqrt{3}-2$ &$\sqrt{6}+\sqrt{2}$ &$\sqrt{2}-\sqrt{6}$ &$-2-\sqrt{3}$\\
\hline
\hline
$180^\circ$ &$0$ &$-1$ &$0$ &undefined &$-1$ &undefined\\
\hline
\hline
$195^\circ$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$2-\sqrt{3}$ &$-\sqrt{6}-\sqrt{2}$ &$\sqrt{2}-\sqrt{6}$ &$2+\sqrt{3}$\\
\hline
$210^\circ$ &$-\frac{1}{2}$ &$-\frac{\sqrt{3}}{2}$ &$\frac{\sqrt{3}}{3}$ &$-2$ &$-\frac{2\sqrt{3}}{3}$ &$\sqrt{3}$\\
\hline
$225^\circ$ &$-\frac{\sqrt{2}}{2}$ &$-\frac{\sqrt{2}}{2}$ &$1$ &$-\sqrt{2}$ &$-\sqrt{2}$ &$1$\\
\hline
$240^\circ$ &$-\frac{\sqrt{3}}{2}$ &$-\frac{1}{2}$ &$\sqrt{3}$ &$-\frac{2\sqrt{3}}{3}$ &$-2$ &$\frac{\sqrt{3}}{3}$\\
\hline
$255^\circ$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$2+\sqrt{3}$ &$\sqrt{6}-\sqrt{2}$ &$-\sqrt{6}-\sqrt{2}$ &$2-\sqrt{3}$\\
\hline
\hline
$270^\circ$ &$-1$ &$0$ &undefined &$1$ &undefined &$0$\\
\hline
\hline
$285^\circ$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$-2-\sqrt{3}$ &$\sqrt{2}-\sqrt{6}$ &$\sqrt{2}+\sqrt{6}$ &$\sqrt{3}-2$\\
\hline
$300^\circ$ &$-\frac{\sqrt{3}}{2}$ &$\frac{1}{2}$ &$-\sqrt{3}$ &$-\frac{2\sqrt{3}}{3}$ &$2$ &$-\frac{\sqrt{3}}{3}$\\
\hline
$315^\circ$ &$-\frac{\sqrt{2}}{2}$ &$\frac{\sqrt{2}}{2}$ &$-1$ &$-\sqrt{2}$ &$\sqrt{2}$ &$-1$\\
\hline
$330^\circ$ &$-\frac{1}{2}$ &$\frac{\sqrt{3}}{2}$ &$-\frac{\sqrt{3}}{3}$ &$-2$ &$\frac{2\sqrt{3}}{3}$ &$-\sqrt{3}$\\
\hline
$345^\circ$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$\frac{\sqrt{6}+\sqrt{2}}{4}$ &$\sqrt{3}-2$ &$-\sqrt{6}-\sqrt{2}$ &$\sqrt{6}-\sqrt{2}$ &$-2-\sqrt{3}$\\
\hline
\hline
$360^\circ$ &$0$ &$1$ &$0$ &undefined &$1$ &undefined\\
\hline
\hline

\end{tabular}
\end{center}

Antwort1

Das folgende Tischdesign könnte Ihnen gefallen:

Bildbeschreibung hier eingeben

Wenn Sie die Tabelle in eine Anzeigemathematikumgebung einfügen und tabularrayein Paket verwenden, ist der Tabellencode viel kürzer und die Tabelle wird viel schöner. Natürlich sollten Sie anstelle von textbf{<text>}und bzw. und verwenden.\textbf{<symbol>}mathbf{<text>}\boldsymbol{<symbol>}

\documentclass{article}
\usepackage{xcolor}
\usepackage{tabularray}
\UseTblrLibrary{amsmath}
\DeclareMathOperator{\cosec}{cosec}

\begin{document}
    \[
\begin{tblr}{hlines, vlines,
             cells = {c},
             row{2,8,14,20,Z} = {bg=gray!20}
             }
\boldsymbol{\alpha} & \sin(\alpha) & \cos(\alpha) & \tan(\alpha)  &\cosec(\alpha) & \sec(\alpha) & \cot(\alpha) \\
%
\mathbf{0}^\circ & \mathbf{0} &\mathbf{1} &\mathbf{0} &\mathbf{undefined} &\mathbf{1} &\mathbf{undefined}\\

15^\circ &\frac{\sqrt{6}-\sqrt{2}}{4} &\frac{\sqrt{6}+\sqrt{2}}{4} &2-\sqrt{3} &\sqrt{6}+\sqrt{2} &\sqrt{6}-\sqrt{2} &2+\sqrt{3}\\
30^\circ &\frac{1}{2} &\frac{\sqrt{3}}{2} &\frac{\sqrt{3}}{3} &2 &\frac{2\sqrt{3}}{3} &\sqrt{3}\\
45^\circ &\frac{\sqrt{2}}{2} &\frac{\sqrt{2}}{2} &1 &\sqrt{2} &\sqrt{2} &1\\
60^\circ &\frac{\sqrt{3}}{2} &\frac{1}{2} &\sqrt{3} &\frac{2\sqrt{3}}{3} &2 &\frac{\sqrt{3}}{3}\\
75^\circ &\frac{\sqrt{6}+\sqrt{2}}{4} &\frac{\sqrt{6}-\sqrt{2}}{4} &2+\sqrt{3} &\sqrt{6}-\sqrt{2} &\sqrt{6}+\sqrt{2} &2-\sqrt{3}\\
90^\circ &1 &0 &\mathbf{undefined} &1 &\mathbf{undefined} &0\\
105^\circ &\frac{\sqrt{6}+{\sqrt{2}}}{4} &\frac{\sqrt{2}-\sqrt{6}}{4} &-2-\sqrt{3} &\sqrt{6}-\sqrt{2} &-\sqrt{6}-\sqrt{2} &\sqrt{3}-2\\
120^\circ &\frac{\sqrt{3}}{2} &-\frac{1}{2} &-\sqrt{3} &\frac{2\sqrt{3}}{3} &-2 &-\frac{\sqrt{3}}{3}\\
135^\circ &\frac{\sqrt{2}}{2} &-\frac{\sqrt{2}}{2} &-1 &\sqrt{2} &-\sqrt{2} &-1\\
150^\circ &\frac{1}{2} &-\frac{\sqrt{3}}{2} &-\frac{\sqrt{3}}{3} &2 &-\frac{2\sqrt{3}}{3} &-\sqrt{3}\\
165^\circ &\frac{\sqrt{6}-\sqrt{2}}{4} &\frac{-\sqrt{6}-\sqrt{2}}{4} &\sqrt{3}-2 &\sqrt{6}+\sqrt{2} &\sqrt{2}-\sqrt{6} &-2-\sqrt{3}\\
180^\circ &0 &-1 &0 &\mathbf{undefined} &-1 &\mathbf{undefined}\\
195^\circ &\frac{\sqrt{2}-\sqrt{6}}{4} &\frac{-\sqrt{6}-\sqrt{2}}{4} &2-\sqrt{3} &-\sqrt{6}-\sqrt{2} &\sqrt{2}-\sqrt{6} &2+\sqrt{3}\\
210^\circ &-\frac{1}{2} &-\frac{\sqrt{3}}{2} &\frac{\sqrt{3}}{3} &-2 &-\frac{2\sqrt{3}}{3} &\sqrt{3}\\
225^\circ &-\frac{\sqrt{2}}{2} &-\frac{\sqrt{2}}{2} &1 &-\sqrt{2} &-\sqrt{2} &1\\
240^\circ &-\frac{\sqrt{3}}{2} &-\frac{1}{2} &\sqrt{3} &-\frac{2\sqrt{3}}{3} &-2 &\frac{\sqrt{3}}{3}\\
255^\circ &\frac{-\sqrt{6}-\sqrt{2}}{4} &\frac{\sqrt{2}-\sqrt{6}}{4} &2+\sqrt{3} &\sqrt{6}-\sqrt{2} &-\sqrt{6}-\sqrt{2} &2-\sqrt{3}\\
270^\circ &-1 &0 &\mathbf{undefined} &1 &\mathbf{undefined} &0\\
285^\circ &\frac{-\sqrt{6}-\sqrt{2}}{4} &\frac{\sqrt{6}-\sqrt{2}}{4} &-2-\sqrt{3} &\sqrt{2}-\sqrt{6} &\sqrt{2}+\sqrt{6} &\sqrt{3}-2\\
300^\circ &-\frac{\sqrt{3}}{2} &\frac{1}{2} &-\sqrt{3} &-\frac{2\sqrt{3}}{3} &2 &-\frac{\sqrt{3}}{3}\\
315^\circ &-\frac{\sqrt{2}}{2} &\frac{\sqrt{2}}{2} &-1 &-\sqrt{2} &\sqrt{2} &-1\\
330^\circ &-\frac{1}{2} &\frac{\sqrt{3}}{2} &-\frac{\sqrt{3}}{3} &-2 &\frac{2\sqrt{3}}{3} &-\sqrt{3}\\
345^\circ &\frac{\sqrt{2}-\sqrt{6}}{4} &\frac{\sqrt{6}+\sqrt{2}}{4} &\sqrt{3}-2 &-\sqrt{6}-\sqrt{2} &\sqrt{6}-\sqrt{2} &-2-\sqrt{3}\\
360^\circ &0 &1 &0 &\mathbf{undefined} &1 &\mathbf{undefined}\\
\end{tblr}
    \]
\end{document}

Antwort2

Nachdem ich mir den Kommentar von Zarko angesehen habe, weiß ich, dass ich $\textbf{\alpha}$durch ersetzen kann $\boldsymbol\alpha$, nachdem ich es in meinem Dokument ausprobiert habe. Der Code, der hier funktioniert, ist:

\begin{tabular}{||c|c|c|c||c|c|c||}
\hline
\hline
$\boldsymbol\alpha$ &sin($\alpha$) &cos($\alpha$) &tan($\alpha$) &cosec($\alpha$) &sec($\alpha$) &cot($\alpha$)\\
\hline
\hline
\textbf{0}$^\circ$ & $\textbf{0}$ &$\textbf{1}$ &$\textbf{0}$ &\textbf{undefined} &$\textbf{1}$ &\textbf{undefined}\\
\hline
\hline
$15^\circ$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$\frac{\sqrt{6}+\sqrt{2}}{4}$ &$2-\sqrt{3}$ &$\sqrt{6}+\sqrt{2}$ &$\sqrt{6}-\sqrt{2}$ &$2+\sqrt{3}$\\
\hline
$30^\circ$ &$\frac{1}{2}$ &$\frac{\sqrt{3}}{2}$ &$\frac{\sqrt{3}}{3}$ &$2$ &$\frac{2\sqrt{3}}{3}$ &$\sqrt{3}$\\
\hline
$45^\circ$ &$\frac{\sqrt{2}}{2}$ &$\frac{\sqrt{2}}{2}$ &$1$ &$\sqrt{2}$ &$\sqrt{2}$ &$1$\\
\hline
$60^\circ$ &$\frac{\sqrt{3}}{2}$ &$\frac{1}{2}$ &$\sqrt{3}$ &$\frac{2\sqrt{3}}{3}$ &$2$ &$\frac{\sqrt{3}}{3}$\\
\hline
$75^\circ$ &$\frac{\sqrt{6}+\sqrt{2}}{4}$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$2+\sqrt{3}$ &$\sqrt{6}-\sqrt{2}$ &$\sqrt{6}+\sqrt{2}$ &$2-\sqrt{3}$\\
\hline
\hline
$90^\circ$ &$1$ &$0$ &undefined &$1$ &undefined &$0$\\
\hline
\hline
$105^\circ$ &$\frac{\sqrt{6}+{\sqrt{2}}}{4}$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$-2-\sqrt{3}$ &$\sqrt{6}-\sqrt{2}$ &$-\sqrt{6}-\sqrt{2}$ &$\sqrt{3}-2$\\
\hline
$120^\circ$ &$\frac{\sqrt{3}}{2}$ &$-\frac{1}{2}$ &$-\sqrt{3}$ &$\frac{2\sqrt{3}}{3}$ &$-2$ &$-\frac{\sqrt{3}}{3}$\\
\hline
$135^\circ$ &$\frac{\sqrt{2}}{2}$ &$-\frac{\sqrt{2}}{2}$ &$-1$ &$\sqrt{2}$ &$-\sqrt{2}$ &$-1$\\
\hline
$150^\circ$ &$\frac{1}{2}$ &$-\frac{\sqrt{3}}{2}$ &$-\frac{\sqrt{3}}{3}$ &$2$ &$-\frac{2\sqrt{3}}{3}$ &$-\sqrt{3}$\\
\hline
$165^\circ$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$\sqrt{3}-2$ &$\sqrt{6}+\sqrt{2}$ &$\sqrt{2}-\sqrt{6}$ &$-2-\sqrt{3}$\\
\hline
\hline
$180^\circ$ &$0$ &$-1$ &$0$ &undefined &$-1$ &undefined\\
\hline
\hline
$195^\circ$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$2-\sqrt{3}$ &$-\sqrt{6}-\sqrt{2}$ &$\sqrt{2}-\sqrt{6}$ &$2+\sqrt{3}$\\
\hline
$210^\circ$ &$-\frac{1}{2}$ &$-\frac{\sqrt{3}}{2}$ &$\frac{\sqrt{3}}{3}$ &$-2$ &$-\frac{2\sqrt{3}}{3}$ &$\sqrt{3}$\\
\hline
$225^\circ$ &$-\frac{\sqrt{2}}{2}$ &$-\frac{\sqrt{2}}{2}$ &$1$ &$-\sqrt{2}$ &$-\sqrt{2}$ &$1$\\
\hline
$240^\circ$ &$-\frac{\sqrt{3}}{2}$ &$-\frac{1}{2}$ &$\sqrt{3}$ &$-\frac{2\sqrt{3}}{3}$ &$-2$ &$\frac{\sqrt{3}}{3}$\\
\hline
$255^\circ$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$2+\sqrt{3}$ &$\sqrt{6}-\sqrt{2}$ &$-\sqrt{6}-\sqrt{2}$ &$2-\sqrt{3}$\\
\hline
\hline
$270^\circ$ &$-1$ &$0$ &undefined &$1$ &undefined &$0$\\
\hline
\hline
$285^\circ$ &$\frac{-\sqrt{6}-\sqrt{2}}{4}$ &$\frac{\sqrt{6}-\sqrt{2}}{4}$ &$-2-\sqrt{3}$ &$\sqrt{2}-\sqrt{6}$ &$\sqrt{2}+\sqrt{6}$ &$\sqrt{3}-2$\\
\hline
$300^\circ$ &$-\frac{\sqrt{3}}{2}$ &$\frac{1}{2}$ &$-\sqrt{3}$ &$-\frac{2\sqrt{3}}{3}$ &$2$ &$-\frac{\sqrt{3}}{3}$\\
\hline
$315^\circ$ &$-\frac{\sqrt{2}}{2}$ &$\frac{\sqrt{2}}{2}$ &$-1$ &$-\sqrt{2}$ &$\sqrt{2}$ &$-1$\\
\hline
$330^\circ$ &$-\frac{1}{2}$ &$\frac{\sqrt{3}}{2}$ &$-\frac{\sqrt{3}}{3}$ &$-2$ &$\frac{2\sqrt{3}}{3}$ &$-\sqrt{3}$\\
\hline
$345^\circ$ &$\frac{\sqrt{2}-\sqrt{6}}{4}$ &$\frac{\sqrt{6}+\sqrt{2}}{4}$ &$\sqrt{3}-2$ &$-\sqrt{6}-\sqrt{2}$ &$\sqrt{6}-\sqrt{2}$ &$-2-\sqrt{3}$\\
\hline
\hline
$360^\circ$ &$0$ &$1$ &$0$ &undefined &$1$ &undefined\\
\hline
\hline

\end{tabular}
\end{center}

verwandte Informationen