Horizontaler Abstand vor ausgerichteten Untergleichungen

Horizontaler Abstand vor ausgerichteten Untergleichungen

Ich habe eine Umgebung für ausgerichtete Untergleichungen verwendet, aber aus irgendeinem Grund sind meine Gleichungen auf der rechten Seite des Papiers ausgerichtet und fallen ab. Ich möchte, dass sie zentriert und am =-Zeichen ausgerichtet sind, wobei die Gleichungsnummer nicht darunter, sondern auf der rechten Seite der Gleichung steht. Dies ist mein Code:

\documentclass{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{geometry}
\geometry{a4paper}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz} %for simple drawings and diagram
\usetikzlibrary{fit,shapes.geometric}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes}
\usepackage{pgfplots}
\usepackage{caption}
\usepackage{subcaption}

%page numbering abstract
\usepackage{etoolbox}
\patchcmd{\abstract}{\titlepage}{\clearpage}{}{}
\patchcmd{\andabstract}{\endtitlepage}{\clearpage}{}{}

%for bibliography
\usepackage{natbib}
\bibliographystyle{apa}

%Includes "References" in the table of contents
\usepackage[nottoc]{tocbibind}

%to use subsections
\usepackage{titlesec}
  \titleformat{\chapter}[hang]
    {\normalfont\huge\bfseries}
    {\thechapter}{20pt}{\huge}

\begin{document}

\chapter{Results}

\section{Elasticity analysis}

\begin{subequations} \allowdisplaybreaks
\begin{align}
\frac{\partial \lambda}{\partial q_{T,1}}&=\frac{q_{T,2}n_Tf_T(1-v)\lambda^3-q_{T,2}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial q_{T,2}}&=\frac{q_{T,1}n_Tf_T(1-v)\lambda^3-q_{T,1}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial q_{L,1}}&=\frac{q_{L,2}n_Lf_L\lambda^3-q_{L,2}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda}{denominator} \\
\frac{\partial \lambda}{\partial q_{L,2}}&=\frac{q_{L,1}n_Lf_L\lambda^3-q_{L,1}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda}{denominator} \\
\frac{\partial \lambda}{\partial a_{T,1}}&=\frac{s_{T,2}\lambda^3-s_{T,2}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{T,2}}&=\frac{s_{T,1}\lambda^3-s_{T,1}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{L,1}}&=\frac{s_{L,2}\lambda^3-(s_{L,2}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{L,2}}&=\frac{s_{L,1}\lambda^3-(s_{L,1}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial n_T}&=\frac{q_{T,2}q_{T,1}f_T(1-v)\lambda^3-q_{T,2}q_{T,1}f_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial f_T}&=\frac{q_{T,2}q_{T,1}n_T(1-v)\lambda^3-q_{T,2}q_{T,1}n_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial n_L}&=\frac{q_{L,2}q_{L,1}f_L\lambda^3-q_{L,2}q_{L,1}f_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial f_L}&=\frac{q_{L,2}q_{L,1}n_L\lambda^3-q_{L,2}q_{L,1}n_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial v}&=\frac{-q_{T,2}q_{T,1}n_Tf_T\lambda^3+q_{T,2}q_{T,1}n_Tf_T(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\text{with } 
denominator=4\lambda^3-(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}+q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})3\lambda^2 \\
+(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda
\end{align}
\end{subequations}

Antwort1

Ich würde diese Brüche vermeiden und die Nenner auf die linke Seite verschieben. Die Bedeutung vonDkann in einer separaten Anzeige sein.

\documentclass{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{geometry}
\geometry{a4paper}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz} %for simple drawings and diagram
\usetikzlibrary{fit,shapes.geometric}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes}
\usepackage{pgfplots}
\usepackage{caption}
\usepackage{subcaption}

%page numbering abstract
\usepackage{etoolbox}
\patchcmd{\abstract}{\titlepage}{\clearpage}{}{}
\patchcmd{\andabstract}{\endtitlepage}{\clearpage}{}{}

%for bibliography
\usepackage{natbib}
\bibliographystyle{apa}

%Includes "References" in the table of contents
\usepackage[nottoc]{tocbibind}

%to use subsections
\usepackage{titlesec}

\titleformat{\chapter}[hang]
  {\normalfont\huge\bfseries}
  {\thechapter}
  {20pt}
  {}

\newcommand{\pder}[2]{\frac{\partial#1}{\partial#2}}

\begin{document}

\chapter{Results}

\section{Elasticity analysis}

\begin{subequations} \allowdisplaybreaks
\begin{align}
D\pder{\lambda}{q_{T,1}}&=
  q_{T,2}n_Tf_T(1-v)\lambda^3-q_{T,2}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{q_{T,2}}&=
  q_{T,1}n_Tf_T(1-v)\lambda^3-q_{T,1}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{q_{L,1}}&=
  q_{L,2}n_Lf_L\lambda^3-q_{L,2}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda \\
D\pder{\lambda}{q_{L,2}}&=
  q_{L,1}n_Lf_L\lambda^3-q_{L,1}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda \\
D\pder{\lambda}{a_{T,1}}&=
  s_{T,2}\lambda^3-s_{T,2}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2 \\
D\pder{\lambda}{s_{T,2}}&=
  s_{T,1}\lambda^3-s_{T,1}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2 \\
D\pder{\lambda}{s_{L,1}}&=
  s_{L,2}\lambda^3-(s_{L,2}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{s_{L,2}}&=
  s_{L,1}\lambda^3-(s_{L,1}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{n_T}&=
  q_{T,2}q_{T,1}f_T(1-v)\lambda^3-q_{T,2}q_{T,1}f_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{f_T}&=
  q_{T,2}q_{T,1}n_T(1-v)\lambda^3-q_{T,2}q_{T,1}n_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{n_L}&=
  q_{L,2}q_{L,1}f_L\lambda^3-q_{L,2}q_{L,1}f_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{f_L}&=
  q_{L,2}q_{L,1}n_L\lambda^3-q_{L,2}q_{L,1}n_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{v}&=
  -q_{T,2}q_{T,1}n_Tf_T\lambda^3+q_{T,2}q_{T,1}n_Tf_T(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2
\end{align}
where
\begin{multline*}
D=4\lambda^3-(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}+q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})3\lambda^2 \\
+(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda
\end{multline*}
\end{subequations}

\end{document}

Bildbeschreibung hier eingeben

verwandte Informationen