So schreiben Sie lange Ungleichungen in einem Korollar in einem zweispaltigen Dokument

So schreiben Sie lange Ungleichungen in einem Korollar in einem zweispaltigen Dokument

Dieses Korollar möchte ich aufschreiben. Es enthält zwei Ungleichungen, wie im folgenden Screenshot zu sehen ist. Ich verwende die zweispaltige IEEEtranDokumentklasse in Overleaf – aktuell mit TeX Live 2022.

Original

Zur Veranschaulichung: Das zu erwartende Ergebnis ist ähnlich wie dieses, auch wenn die Gleichungen (1) und (2) nicht ganz klar erscheinen.

erwartet 2 Spalten

\documentclass[journal]{IEEEtran}
\usepackage{mathtools}
\usepackage{amsmath}
\begin{document}

\begin{corollary}\label{Corollary:new_seq}
Supposing that $i^{\ast} = argmax_i R_3(i)$ and $i^{\ast\ast} = argmax_i R_4(i)$ for all   $i=1,\ldots,n$, if $max (R_3(i),R_4(i)) \geq max(R_5(A^{\prime}),R_6(A^{\prime\prime}))$ in a serial configuration, then the new sequence is optimal when one of the following constraints is fulfilled.

\renewcommand{\labelenumi}{(\roman{enumi})}
\begin{enumerate}
    \item 
    \begin{equation} \label{eq:corollary_i}
    max_{i^{\ast} =1,...,n} (q_i^{\ast}\cdot p_i^{\ast} + (1-q_i^{\ast})c_i^{\ast} \quad  \forall i^{\ast}\geq(n-1), q_i^{\ast}\cdot c_i^{\ast} + (1-q_i^{\ast})p_i^{\ast} \quad   \text{for $i^{\ast} = n$}) \geq (n-1)w + nv
    \end{equation}
 
    \item
    \begin{equation} \label{eq:corollary_ii}
    max_{i^{\ast\ast} =1,...,n} (q_i^{\ast\ast}\cdot p_i^{\ast\ast} + (1-q_i^{\ast\ast})c_i^{\ast\ast} \quad  \forall i^{\ast\ast}\geq(n-1), q_i^{\ast\ast}\cdot c_i^{\ast\ast} + (1-q_i^{\ast\ast})p_i^{\ast\ast} \quad  \text{for $i^{\ast} = n$}) \geq (n+1)w + (n+2)v
    \end{equation}    
\end{enumerate}
\end{corollary}
\end{document}

Allerdings übertreffen beide Gleichungen (i) und (ii) die Spalte wie folgt.

Bildbeschreibung hier eingeben

Kann mir jemand empfehlen, was ich mit dem Code machen soll? Wenn Sie andere Möglichkeiten haben, um eine übersichtlichere Schrift zu erstellen, lassen Sie es mich bitte wissen. Vielen Dank im Voraus.

Antwort1

Ich würde die Ungleichungen nicht sowohl mit einer Aufzählungsbezeichnung als auch einer Gleichungsbezeichnung versehen. Da Sie die Aufzählungsbezeichnung ohnehin benötigen, würde ich auf die Gleichungsbezeichnung verzichten. Im folgenden Code habe ich die Aufzählung so eingerichtet, dass Elemente leicht querverwiesen werden können.

Bildbeschreibung hier eingeben

\documentclass[journal]{IEEEtran}
\usepackage{mathtools}
%\usepackage{amsmath} % amsmath is loaded automatically by mathtools
\DeclareMathOperator{\argmax}{argmax}
\usepackage{amsthm}
\newtheorem{corollary}{Corollary}
\usepackage{newtxmath}
\usepackage{enumitem}

\begin{document}

\begin{corollary}\label{Corollary:new_seq}
Suppose that $i^{\ast} = \argmax_i R_3(i)$ and 
$i^{\ast\ast} = \argmax_i R_4(i)$ for $i\in\{1,\dots,n\}$. 
If $\max (R_3(i),R_4(i)) \geq \max(R_5(A'),R_6(A''))$ 
in a serial configuration, then the new sequence is 
optimal if one of the following constraints is 
ful\-filled.
\begin{enumerate}[label=\textup{C.\roman*)},
                  ref= C.\roman*,
                  left=0pt, align=left]
\item \label{item:corollary_i}
\parbox[t]{0.8\columnwidth}{\raggedright$ 
    \max\limits_{i^{\ast} =1,\dots,n}
    \bigl\{
    q_i^{\ast} p_i^{\ast} + (1-q_i^{\ast})c_i^{\ast} 
    \textup{ for all $i^{\ast}\leq n-1$},\allowbreak 
    q_i^{\ast} c_i^{\ast} + (1-q_i^{\ast})p_i^{\ast} 
    \textup{ for $i^{\ast} = n$}
    \bigr\} 
    \geq (n-1)w + nv$}

\bigskip
\item \label{item:corollary_ii}
\parbox[t]{0.87\columnwidth}{\raggedright$
    \max\limits_{i^{\ast\ast} =1,\dots,n}
    \bigl\{
    q_i^{\ast\ast} p_i^{\ast\ast} + (1-q_i^{\ast\ast}) c_i^{\ast\ast} 
    \textup{ for all $i^{\ast\ast}\leq n-1$},\allowbreak
     q_i^{\ast\ast} c_i^{\ast\ast} + (1-q_i^{\ast\ast})p_i^{\ast\ast} 
    \textup{ for $i^{\ast} = n$}
    \bigr\} 
    \geq (n+1)w + (n+2)v$}
\end{enumerate}
\end{corollary}

If one of the constraints \ref{item:corollary_i} or 
\ref{item:corollary_ii} is fulfilled, \dots
\end{document}

verwandte Informationen