Ich brauche eine lange Tabelle mit 7 Spalten, also habe ich das Querformat gewählt. Alles funktioniert einwandfrei, außer dem Text in der letzten Spalte, der nicht an der richtigen Stelle sitzt. Ich kann nicht verstehen, warum der Text die Seitenränder nicht einhält (der Text, den ich nach der Tabelle geschrieben habe, tut das). Im Bild sehen Sie ein Beispiel dafür.
Hier sind einige Codezeilen zur Reproduktion des Problems:
\documentclass{report}
\usepackage{array}
\usepackage{pdflscape}
\usepackage{colortbl}
\usepackage{longtable}
\begin{document}
\begin{landscape}
\footnotesize
\begin{longtable}
{>{\centering\hspace{0pt}}m{0.055\linewidth}>
{\centering\hspace{0pt}}m{0.06\linewidth}>
{\centering\hspace{0pt}}m{0.22\linewidth}>
{\centering\hspace{0pt}}m{0.04\linewidth}>
{\centering\hspace{0pt}}m{0.15\linewidth}>
{\centering\hspace{0pt}}m{0.05\linewidth}>
{\centering\arraybackslash\hspace{0pt}}m{0.3\linewidth}}
\caption{EEG table} \\
\label{tab:EEG}
\textbf{} & \textbf{Cohort} & \textbf{MI Task} & \textbf{NC} &
\textbf{Network Nodes} & \textbf{Metrics} & \textbf{Main Findings}
\endfirsthead
\multicolumn{7}{c}%
{{\bfseries \tablename\ \thetable{} -- continued from previous page}} \\
\\
\textbf{} & \textbf{Cohort} & \textbf{MI Task} & \textbf{NC}
& \textbf{Network Nodes} & \textbf{Metrics} & \textbf{Main Findings}\\ \hline
\endhead
\hline
\multicolumn{7}{>{\centering\arraybackslash\hspace{0pt}}m{1.089\linewidth}}
{{\cellcolor[rgb]{0.714,0.714,0.714}}\textbf{Effective Connectivity}}
\\
\hline
\rowcolor[rgb]{0.871,0.871,0.871} Vukelić, Mathias et al. (2014) & 16 HS & kinesthetic imagination of opening the right hand; each trial consisted of a preparation (2s), MI (6s), and rest (8s) phase & 32 & 24 electrodes as nodes & PSI & activation of an ipsilateral sensorimotor–parietal EC network is an indicator of a low ability for regional sensorimotor $\beta$-modulation \\
Yi, Weibo et al. (2014) & 10 HS & imagine left hand, right hand, feet, both hands and hand combined with foot movements; each trial consisted of a preparation cue (1s), MI (4s) and rest (1s) phase & 64 & 21 electrodes as nodes & \textcolor{red}{PLV}, SDTF & findings imply that there exist apparent intrinsic distinctions of neural mechanism between simple and compound limb MI, which presents a more complex EC network and may involve a more complex cognitive process during information processing \\
\rowcolor[rgb]{0.871,0.871,0.871} Liang, Shuang et al. (2016) & 9 HS & imagination of movement of the left hand, right hand, both feet and tongue; each trial consisted of a cue (1.25s), MI (3s, no feedback was provided) and rest (1.5s) phase & 22 & 9 electrodes used as nodes & PDC & significant EC exists in the bilateral hemisphere during the tasks, regardless of the left or right-hand MI tasks. Furthermore, the out-in rate results of the information flow reveal the existence of contralateral lateralisation; \textcolor{red}{using PDC to compute EC provides efficient features for the detection of MI tasks and has great potential to be applied in BCIs}
\end{longtable}
\textbf{Abbreviations:}
\textbf{ADTF} Adaptive Directed Transfer Function,
\textbf{BCI} Brain Computer Interface,
\textbf{CCorr} Cross Correlation,
\textbf{CMA} Cingulate Motor Areas,
\textbf{Coh} Coherence,
\textbf{Corr} Correlation,
\textbf{DCM} Dynamic Causal Modelling
\end{landscape}
\end{document}
Antwort1
Durch die Verwendung longtblr
des tabularray
Pakets anstelle von longtalble
können Sie kürzeren Code schreiben, der eine besser formatierte Tabelle ergibt. Bei Verwendung von X
Spalten ist die Tabellenbreite gleich \linewidth
(= \textheight
) und außerdem kann das Verhältnis zwischen den Spaltenbreiten bestimmt werden, mit Ausnahme der zweiten und vierten Spalte, bei denen die natürliche Breite beibehalten wird, die durch den Zellinhalt bestimmt wird. Die zweite und die letzte Spalte haben Blocksatztext, was meiner Meinung nach der Tabelle ein besseres Aussehen verleiht.
\documentclass{report}
\usepackage{pdflscape}
\usepackage{xcolor}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}
\begin{document}
\begin{landscape}
\footnotesize
\begin{longtblr}[
caption = {EEG table},
label = {tab:EEG}
]{colsep=4pt,
colspec = {X[0.5,l,m] Q[c,m]
X[1.8,j,m] Q[c,m] X[0.7,l,m] X[0.3,c,m]
X[2.2,j,m]
},
cell{2}{1} = {c=7}{c},
row{1,2} = {c, font=\bfseries},
row{2} = {font=\bfseries, bg=gray!45},
row{odd[3]} = {bg=gray!15},
rowhead = 1}
\toprule
& Cohort
& MI Task
& NC
& Network Nodes
& Met\-rics
& Main Findings \\
\midrule
Effective Connectivity
& & & & & & \\
Vukelić, Mathias et al. (2014)
& 16 HS
& kinesthetic imagination of opening the right hand; each trial consisted of a preparation (2s), MI (6s), and rest (8s) phase
& 32
& 24 electrodes as nodes
& PSI
& activation of an ipsilateral sensorimotor–parietal EC network is an indicator of a low ability for regional sensorimotor $\beta$-modulation
\\
Yi, Weibo et al. (2014)
& 10 HS
& imagine left hand, right hand, feet, both hands and hand combined with foot movements; each trial consisted of a preparation cue (1s), MI (4s) and rest (1s) phase
& 64
& 21 electrodes as nodes
& \textcolor{red}{PLV}, SDTF
& findings imply that there exist apparent intrinsic distinctions of neural mechanism between simple and compound limb MI, which presents a more complex EC network and may involve a more complex cognitive process during information processing \\
Liang, Shuang et al. (2016)
& 9 HS
& imagination of movement of the left hand, right hand, both feet and tongue; each trial consisted of a cue (1.25s), MI (3s, no feedback was provided) and rest (1.5s) phase
& 22
& 9 electrodes used as nodes
& PDC
& significant EC exists in the bilateral hemisphere during the tasks, regardless of the left or right-hand MI tasks. Furthermore, the out-in rate results of the information flow reveal the existence of contralateral lateralisation; \textcolor{red}{using PDC to compute EC provides efficient features for the detection of MI tasks and has great potential to be applied in BCIs}
\\
\bottomrule
\end{longtblr}
\textbf{Abbreviations:}
\textbf{ADTF} Adaptive Directed Transfer Function,
\textbf{BCI} Brain Computer Interface,
\textbf{CCorr} Cross Correlation,
\textbf{CMA} Cingulate Motor Areas,
\textbf{Coh} Coherence,
\textbf{Corr} Correlation,
\textbf{DCM} Dynamic Causal Modelling
\end{landscape}
\end{document}
Antwort2
Sie haben mit einem expliziten Wert in einer mehrspaltigen Tabelle eine Breite als den Textblock erzwungen 1.089\linewidth
und die Summe der Spaltenbreiten und \tabcolsep
-abstände betrug mehr als \linewidth
, ich habe \tabcolsep
hier reduziert.
\documentclass{report}
\usepackage{array}
\usepackage{pdflscape}
\usepackage{colortbl}
\usepackage{longtable}
\begin{document}
\begin{landscape}
\noindent X\dotfill X
\footnotesize
\setlength\tabcolsep{4.9pt}
\begin{longtable}
{>{\centering\hspace{0pt}}m{0.055\linewidth}>
{\centering\hspace{0pt}}m{0.06\linewidth}>
{\centering\hspace{0pt}}m{0.22\linewidth}>
{\centering\hspace{0pt}}m{0.04\linewidth}>
{\centering\hspace{0pt}}m{0.15\linewidth}>
{\centering\hspace{0pt}}m{0.05\linewidth}>
{\centering\arraybackslash\hspace{0pt}}m{0.3\linewidth}}
\caption{EEG table} \\
\label{tab:EEG}
\textbf{} & \textbf{Cohort} & \textbf{MI Task} & \textbf{NC} &
\textbf{Network Nodes} & \textbf{Metrics} & \textbf{Main Findings}
\endfirsthead
\multicolumn{7}{c}%
{{\bfseries \tablename\ \thetable{} -- continued from previous page}} \\
\\
\textbf{} & \textbf{Cohort} & \textbf{MI Task} & \textbf{NC}
& \textbf{Network Nodes} & \textbf{Metrics} & \textbf{Main Findings}\\ \hline
\endhead
\hline
\multicolumn{7}{c}
{{\cellcolor[rgb]{0.714,0.714,0.714}}\textbf{Effective Connectivity}}
\\
\hline
\rowcolor[rgb]{0.871,0.871,0.871} Vukelić, Mathias et al. (2014) & 16 HS & kinesthetic imagination of opening the right hand; each trial consisted of a preparation (2s), MI (6s), and rest (8s) phase & 32 & 24 electrodes as nodes & PSI & activation of an ipsilateral sensorimotor–parietal EC network is an indicator of a low ability for regional sensorimotor $\beta$-modulation \\
Yi, Weibo et al. (2014) & 10 HS & imagine left hand, right hand, feet, both hands and hand combined with foot movements; each trial consisted of a preparation cue (1s), MI (4s) and rest (1s) phase & 64 & 21 electrodes as nodes & \textcolor{red}{PLV}, SDTF & findings imply that there exist apparent intrinsic distinctions of neural mechanism between simple and compound limb MI, which presents a more complex EC network and may involve a more complex cognitive process during information processing \\
\rowcolor[rgb]{0.871,0.871,0.871} Liang, Shuang et al. (2016) & 9 HS & imagination of movement of the left hand, right hand, both feet and tongue; each trial consisted of a cue (1.25s), MI (3s, no feedback was provided) and rest (1.5s) phase & 22 & 9 electrodes used as nodes & PDC & significant EC exists in the bilateral hemisphere during the tasks, regardless of the left or right-hand MI tasks. Furthermore, the out-in rate results of the information flow reveal the existence of contralateral lateralisation; \textcolor{red}{using PDC to compute EC provides efficient features for the detection of MI tasks and has great potential to be applied in BCIs}
\end{longtable}
\textbf{Abbreviations:}
\textbf{ADTF} Adaptive Directed Transfer Function,
\textbf{BCI} Brain Computer Interface,
\textbf{CCorr} Cross Correlation,
\textbf{CMA} Cingulate Motor Areas,
\textbf{Coh} Coherence,
\textbf{Corr} Correlation,
\textbf{DCM} Dynamic Causal Modelling
\end{landscape}
\end{document}