(Titel) Warum werden mein Titel, Autor und Datum durch Zahlen und Mathematik verfälscht?

(Titel) Warum werden mein Titel, Autor und Datum durch Zahlen und Mathematik verfälscht?

Beim Versuch, einem Dokument mathematische oder Zahlen hinzuzufügen, werden anscheinend alle drei Elemente gequetscht. Dadurch sehen die Dokumente inkonsistent aus und ich frage mich, ob es dafür eine Lösung gibt.

\documentclass[letterpaper,12pt]{article}

\usepackage{newfloat}
\usepackage[showframe, left=1.5cm, right=1.5cm, top=1.5cm, bottom=1.5cm]{geometry}
\usepackage{titling}
\usepackage{indentfirst}
\usepackage{fancyhdr}
\usepackage{microtype}
\usepackage{unicode-math}
    \setmainfont{Times New Roman}[Ligatures=TeX]
    \setmathfont{STIX Two Math}

\setlength{\droptitle}{-2cm}

\renewcommand{\maketitlehookb}{\vspace{-1cm}} 

\renewcommand{\maketitlehookd}{\vspace{-.5cm}} 

\renewcommand{\arraystretch}{1.5}

% }

\title{Title of Document}
\author{Author Name Generic}
\date{\today}

\begin{document}

\maketitle



\end{document}

Code mit Mathematik zum Vergleichen

% {
\documentclass[letterpaper,12pt]{article}

\usepackage{newfloat}
\usepackage[showframe, left=1.5cm, right=1.5cm, top=1.5cm, bottom=1.5cm]{geometry}
\usepackage{titling}
\usepackage{indentfirst}
\usepackage{fancyhdr}
\usepackage{microtype}
\usepackage{siunitx}
\usepackage{stackengine}
\usepackage{cancel}
\usepackage{unicode-math}
    \setmainfont{Times New Roman}[Ligatures=TeX]
    \setmathfont{STIX Two Math}

\setlength{\droptitle}{-2cm}

\renewcommand{\maketitlehookb}{\vspace{-1cm}} 

\renewcommand{\maketitlehookd}{\vspace{-.5cm}} 

\renewcommand{\arraystretch}{1.5}

% }

\title{Title of Document}
\author{Author Name Generic}
\date{\today}

\begin{document}

\maketitle

      Identities \newline

            The Sum and Difference Identities

            \begin{gather}
                \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)\\
                \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)\\
                \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)\\
                \sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)
            \end{gather} 
            
    \textbf{Example 1:} Evaluating a Trigonometric Function \newline
    
        A. Find the exact value of $\displaystyle \sin\left(\dfrac{\pi}{12}\right)$

        \begin{align}
            \frac{\pi}{12} &= \frac{4\pi}{12} - \frac{3\pi}{2}\\
            &= ~ \frac{\pi}{3} ~~~~~~~\frac{\pi}{4}
        \end{align}

        \begin{align}
            &\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)\\
            &= \sin \left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)\\
            &= \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{\sqrt{2}}{2}\right)\\
            &= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}
        \end{align}
        
        B. Find the exact value of $\cos(\ang{75}).$   

        \begin{align}
            &\cos(\overset{\alpha}{\ang{30}} + \overset{\beta}{\ang{45}})\\
            &= \cos(\ang{30})\cos(\ang{45})-\sin(\ang{30})\sin(\ang{45})\\
            &= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{\sqrt{2}}{2}\right)\\
            &= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}
        \end{align}
        
    \textbf{Example 2}: Proving a Cofunction Identity \newline

        Use a difference formula to prove the cofunction identity:

        \begin{gather}   
        \cos \left(\frac{\pi}{2} - x\right) = \sin(x) 
        \end{gather}

        \begin{align}
            \cos \left(\frac{\pi}{2} - x\right) &= \cos \overset{0}{\left(\frac{\pi}{2}\right)} \cos(x) + \sin \overset{1}{\left(\frac{\pi}{2}\right)} \sin(x)\\
            &= 0 \ast \cos(x) + 1 \ast \sin(x)\\
            &= \sin(x)
        \end{align}
        
    \textbf{Example 3:} Solve
    
        \[
        \sin\overset{\alpha}{(x)}\sin\overset{\beta}{(2x)} + \cos\overset{\alpha}{(x)}\cos\overset{\beta}{(2x)} = \frac{\sqrt{3}}{2} 
        \]

                Recall: $\cos(-x) = \cos(x)$    

        \begin{align}
            \cos (x - 2x) &= \frac{\sqrt{3}}{2}\\
            &\cos (-x) = \frac{\sqrt{3}}{2}\\
            &\cos x = \frac{\sqrt{3}}{2}\\
            &x = \frac{\pi}{6} + 2 \pi k\\
            &x = \frac{11 \pi}{6} + 2 \pi k
        \end{align}
        
            Identities \newline

            The Product to Sum Identities

            \begin{gather}
                \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))\\
                \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))\\
                \cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta))
            \end{gather}
            
    \textbf{Example 4:} Write $\sin\overset{\alpha}{(2t)}\sin\overset{\beta}{(4t)}$ as a sum or difference

            \begin{align}
                &= \frac{1}{2}(\cos(2t - 4t) - \cos(2t + 4t))\\
                &= \frac{1}{2}(\cos(-2t) - \cos (6t))\\
                &= \frac{1}{2} (\cos(2t) - \cos (6t))
            \end{align}
            
            Identities \newline

            The Sum to Product Identities

            \begin{align}
                \sin(u) + \sin(v) = 2\sin\left(\frac{u + v}{2}\right)\cos
                \left(\frac{u - v}{2}\right)\\
                \sin(u) - \sin(v) = 2\sin\left(\frac{u - v}{2}\right)\cos
                \left(\frac{u + v}{2}\right)\\
                \cos(u) + \cos(v) = 2\cos\left(\frac{u + v}{2}\right)\cos
                \left(\frac{u - v}{2}\right)\\
                \cos(u) - \cos(v) = 2\cos\left(\frac{u - v}{2}\right)\cos
                \left(\frac{u + v}{2}\right)
            \end{align}
            
    \textbf{Example 5:} Evaluate $\cos\stackon{(\ang{15})}{u} - \cos\stackon{(\ang{75})}{v}$ \newline

    Recall: $\sin(-30) = -\sin(30)$

            \begin{align}
                &-2 \sin \left(\frac{\ang{15} + \ang{75}}{2}\right) \sin\left(\frac{\ang{15} - \ang{75}}{2}\right)\\
                &+ 2 \sin (\ang{45}) ~ \sin (\ang{30})\\
                &= \cancel{2} \left(\frac{\sqrt{2}}{\cancel{2}}\right) \left(\frac{1}{2}\right) = \left(\frac{\sqrt{2}}{2}\right)
            \end{align}


\end{document}

Bildbeschreibung hier eingeben

Wenn irgendjemand dabei helfen könnte, wäre das eine große Hilfe

verwandte Informationen