Tischgröße wird kleiner

Tischgröße wird kleiner

Meine Abschlussarbeit enthält mehrere Tabellen und ich finde es schwierig, sie in LaTeX zu verwalten, da meine Erfahrung mit LaTeX-Tabellen begrenzt ist. Ich wäre Ihnen in dieser Angelegenheit sehr dankbar für Ihre Hilfe.

Speziell fürTabelle 1,Tabelle 2, UndTisch 3, wie in den Bildern unten dargestellt, ist die Schriftgröße in der Tabelle auffallend klein. Dieses Problem betrifft nicht nur diese Tabelle, sondern tritt immer wieder bei allen Tabellen in meiner Arbeit auf.

Tabelle 1

Tabelle 1

Tabelle 2

Tisch

Tisch 3

Tisch 3

Die Codes für diese Tabellen finden Sie weiter unten (Tabelle 1):

\begin{table}[!htb]
\caption[Fabrication techniques of sensing materials and their attributes]{Common sensing materials fabrication techniques with their general benefits and limitations.}
\label{table1-1}

\begin{adjustbox}{width=\textwidth}

\setcellgapes{4pt}
\makegapedcells

\begin{tabular}[!htb]{@{} llcc @{}}

\hline
Method & Description & Benefits & Limitations \\
\hline

\multicolumn{4}{c}{\textbf{Wet synthesis methods}} \\

Sol-gel & A chemical process that involves the transition of a solution to a gel for material preparation under mild condition. & - Controlled composition\newline
- Good homogeneity\newline
- Low processing temperature\newline
- Versatility\newline & - Long processing time\newline
- Size reduction upon drying\newline
- Requires careful control of parameters\newline
- Often require post-synthesis treatments \\
Hydrothermal / solvothermal & Uses high temperature and pressure in aqueous (hydrothermal) or non-aqueous solutions (solvothermal). & - High purity\newline
- Crystallinity control\newline
- low to moderate temperatures\newline
- Scalable & - High pressure equipment\newline
- Limited range of particle size\newline
- Energy-intensive\newline
- Time-consuming \\
Electrodeposition & Electrochemical process for depositing a layer/coating of material by means of electric current. & - Cost-effective\newline
- Good control over thickness\newline
- Can coat complex shapes\newline
- Uniform deposition & - Limited to conductive substrates\newline
- May require post-treatment\newline
- Thickness limitations\newline
- Environmental concerns \\
Coprecipitation & Precipitation of a solid from a solution containing multiple ions under controlled aqueous solutions and environments. & - Simple process\newline
-Scalable\newline
- Low cost\newline
- Good control over composition & - Requires washing and filtration\newline
- Agglomeration issues\newline
- Poor impurity control\newline
- Poor particle size control \\

\multicolumn{4}{c}{\textbf{Dry synthesis methods}} \\

Atomic layer deposition & Thin film deposition technique based on the sequential use of a gas phase. & - Excellent control over thickness\newline
- High uniformity\newline
- Good conformality\newline
- High-quality films & - Slow deposition rate\newline
- Limited to certain materials\newline
- Expensive equipment\newline
- Temperature sensitivity \\
Sputtering & Physical vapor deposition technique for thin film creation using suitable energy of a plasma. & - Versatile materials
- Good adhesion\newline
- Scalable\newline
- Uniform thickness\newline
- Good control of film thickness & - Costly equipment\newline
- May require high vacuum\newline
- Limited substrate size\newline
- Limit of precursor penetration depth \\
Chemical vapor deposition & Depositing solid material from a vapor by a chemical reaction under controlled atmospheres. & - High purity and quality\newline
- Direct electrode assembly\newline
- Scalable\newline
- Wide material choice & - High temperatures\newline
- Complex equipment\newline
- Safety concerns with gases\newline
- Uniformity challenges\newline
- Low production rate \\
Spray pyrolysis & Atomization of a precursor solution into droplets, followed by the evaporation of solvents and decomposition of the metal source in a heated reactor to generate particles. & - Simple setup\newline
- Cost-effective\newline
- Versatile materials\newline
- Large area deposition & - Poor particle size control\newline
- Requires heat/high-temperature management\newline
- May produce rough surfaces\newline
- Limited film thickness \\
Flame spray pyrolysis & Atomization of a precursor solution into droplets, followed by the combustion of solvents and decomposition of a precursor(s) to create nuclei then form nanoparticles. & - High production rate\newline
- Good control of particle composition\newline
- Scalable\newline
- Versatile & - High temperatures\newline
- Health \& safety concerns\newline
- Equipment cost\newline
- Particle agglomeration \\
\hline

\end{tabular}
\end{adjustbox}
\end{table}

Tabelle 2:

\begin{table}[!htb]
 \caption[Recent studies on room temperature VOC sensors.]{Comparison of recent studies of room temperature VOC sensors.}
 \label{table2-1}
 \begin{adjustbox}{width=\textwidth}

 \setcellgapes{4pt}
 \makegapedcells
   \begin{tabular}[!htb]{@{}lccccccc@{}}
 
  \hline
  Material & Temperature (\textdegree C) & External Catalyst & EtOH concentration (ppm) & Responsivity (I\textsubscript{EtOH}/I\textsubscript{air} -1) & Limit of Detection (ppm) & Response/Recovery times (sec) & Ref. \\
  \hline
 
  Thick Porous \ce{ZnO} fractals & RT & Solar light & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
  \ce{ZnO-NiO} nanoheterjunctions & RT & Solar light & 0.1 & 0.77 & 0.01 & N/A & [9b] \\
  \ce{ZnO} nanorods & RT & UV light & 200 & 4.24\textsuperscript{a)} & N/A & 52/192 & [18] \\
  \ce{Cr2O3} functionalized \ce{ZnO} & RT & UV light & 200 & 10.95\textsuperscript{a)} & N/A & 26/110 & [18] \\
  \ce{$\alpha$-Fe2O3}/\ce{ZnO} nanowires & RT & N/A & 100 & 9.1\% & 100 & N/A & [30a] \\
  Au-modified \ce{ZnO} nanowire & RT & N/A & 20 & ~10\textsuperscript{b)} & N/A & -/5 & [30b] \\
  \ce{ZnO} nano disks & RT & Thermally and UV activated & 100 & 0.17 & 20 & 11/15 & [39] \\
  Au-\ce{ZnO} nanofibers & RT & UV & 100 & 1.18\textsuperscript{c)} & N/A & N/A & [40] \\
  \ce{ZnO} nanotubes & RT & N/A & 10 & 30.91\textsuperscript{d)} & N/A & 263/80 & [41] \\
  \hline
  
  \multicolumn{8}{l}{\small \textsuperscript{a)} I\textsubscript{ethanol}/I\textsubscript{air} *100; \textsuperscript{b)} 1-I\textsubscript{ethanol}/I\textsubscript{air} * 100; \textsuperscript{c)} I\textsubscript{ethanol}/I\textsubscript{air}; \textsuperscript{d)} 1-I\textsubscript{air}/I\textsubscript{ethanol} * 100}\\
  
  \end{tabular}
 \end{adjustbox}
\end{table}

Tisch 3:

\begin{table}[!htb]
\caption[Recent ethanol sensors with oxygen defects.]{Comparison of recently developed ethanol sensors with oxygen defects.}
\label{table2-2}

\begin{adjustbox}{width=\textwidth}
 
 \setcellgapes{4pt}
 \makegapedcells
 
\begin{tabular}[!htb]{@{}lccccccc@{}}

\hline
Material & Sensing Temp. (\textdegree C) & Oxygen Vacancy Introduction & EtOH Concentration (ppm) & Responsivity (I\textsubscript{EtOH}/I\textsubscript{air} -1) & Limit of Detection (ppm) & Response/Recovery Times (sec) & Ref. \\
\hline
Thick Porous \ce{ZnO} fractals & RT & DUV Photoactivation at 200 \textdegree C & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
Thick Porous \ce{ZnO} fractals & 150 & DUV Photoactivation at 200 \textdegree C & 0.05, 1 & 0.97, 15.9 & 0.005 & 371/486, 260/312 & This work \\
\ce{ZnO} nanorod arrays & 400 & \ce{H2O2} thermal treatment at 400 \textdegree C & 3 & ~70\textsuperscript{a)} & 1 & N/A & [35a] \\
Rutile \ce{SnO2} nanostructures & 190 & Reduction by \ce{NaBH4} & 20 & 37.2\textsuperscript{a)} & N/A & 42/17 & [43] \\
\ce{SnO2} nano-columns & RT & Reducing environment (Argon) & 400 & 1.27 & N/A & N/A & [42] \\
\ce{In2O3} octahedral particles & 200 & Phase transformation process from \ce{In(OH)3} at 300 \textdegree C & 1000 & 610\textsuperscript{a)} & N/A & 1-2/15-20 & [15] \\
\ce{ZnO} nanosheets & 330 & Preferential [0001] growth direction at 500 \textdegree C & 50 & 80\textsuperscript{a)} & N/A & N/A & [44] \\
Co-doped \ce{ZnO} microspheres & 220 & Co doping at 400 \textdegree C & 5 & 3.3\textsuperscript{a)} & N/A & N/A & [45] \\
Ce-doped \ce{ZnO} nanostructures & 300 & Ce-doping at 450 \textdegree C & 100 & 72.6\textsuperscript{a)} & N/A & 9/3 & [46] \\
\ce{ZnO}/\ce{SnO2} composite hollow spheres & 225 & Hydrothermal process, calcination at 400 \textdegree C & 30 & 34.8\textsuperscript{a)} & 0.5 & 1/- & [47] \\
\hline

\multicolumn{7}{l}{\small \textsuperscript{a)} I\textsubscript{ethanol}/I\textsubscript{air}} \\
\end{tabular}
\end{adjustbox}
\end{table}

Ich habe ein Problem mitTabelle 4wie unten dargestellt. Jedes Mal, wenn ich versuche, das Dokument zu kompilieren, das diese Tabelle enthält, wird der Kompilierungsprozess endlos fortgesetzt und kann nicht abgeschlossen werden. Auch wenn ich die Verwendung von \ceBefehlen innerhalb der Tabelle reduziere, besteht das Problem weiterhin. Darüber hinaus wäre ich für jede Hilfe beim Formatieren dieser Tabelle dankbar, damit sie sich über mehrere Seiten erstreckt.

\begin{table}[!htb]
\caption{Summary of materials, precursors, solvents, and morphologies for various sensing applications.} \label{table:materials}

\begin{adjustbox}{width=\textwidth}

\setcellgapes{4pt}
\makegapedcells

\begin{tabular}[!htb]{@{}lccccc@{}}

\hline
Material & Precursor & Solvent & Nanostructure Morphology & Sensing Application & Ref. \\
\hline

La-doped \ce{WO3} & La(NO\textsubscript{3})\textsubscript{3}.6H\textsubscript{2}O & ethanol & nano particles & gas sensing & \cite{Zhang_2022} \\
\ce{WO3} & (NH\textsubscript{4})\textsubscript{6}H\textsubscript{2}OW\textsubscript{12}.xH\textsubscript{2}O & ethanol & nano particles (crystals) & gas sensing & \cite{Wu_2022} \\
Zn\textsubscript{2}SnO\textsubscript{4} & ZTO & ethanol & nano particles  & photo detection & \cite{Karthick_2023} \\
ZnO & zinc naphthenate & m-xylene & nano particles & photo detection & \cite{Nasiri2015} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano particles & gas sensing & \cite{Keskinen_2009} \\
\ce{SnO2} & ethylhexanoate  & ethanol & nano particles & gas sensing & \cite{Sahm_2004} \\
Pt-loaded WO\textsubscript{3} & tungsten ethoxide & ethanol & nano particles & gas sensing & \cite{Samerjai2011} \\
Nb-ZnO &  & zinc naphthenate & toluene/methanol (70/30) Vol.\% & gas sensing & \cite{Kruefu_2011} \\
Nb-doped \ce{TiO2} & titanium isopropoxide & xylene/acetonitrile & nano powders & gas sensing & \cite{Phanichphant_2011} \\
\ce{TiO2} & titanium tetra isopropoxide & Xylene/acetonitrile & nano particles and films & gas sensing & \cite{Teleki_2006} \\
\ce{WO3} & ammonium tungsten hydrate & glycol/ethanol & nano particles & bio sensing & \cite{Wang_2008} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano powder & gas sensing & \cite{Liewhiran_2012} \\
Ru-\ce{SnO2} & tin ethylhexanoate & xylene & Nano powders/thick films & gas sensing & \cite{Liewhiran_2009} \\
Pt/ZnO & zinc naphthenate & xylene & Nano powder/thick films & gas sensing & \cite{Tamaekong2009} \\
Pt-loaded ZnO & zinc naphthenate & xylene & Nano particles/thick films  & gas sensing & \cite{Tamaekong_2011} \\
Pd-ZnO & zinc naphthenate & toluene/acetonitrile (80/20) Vol.\% & nano particles/thick films & gas sensing & \cite{Liewhiran_2008} \\
Nb- and Cu-doped \ce{TiO2} & titanium tetra isopropoxide & xylene & nano particles & gas sensing & \cite{TELEKI_2008} \\
Bi\textsubscript{2}WO\textsubscript{6} & bismuth nitrate pentahydrate, tungsten ethoxide & ethanol, acetic acid & nano particles & gas sensing & \cite{Punginsang_2019} \\
PdO\textsubscript{x} doped \ce{In2O3} & indium nitrate hydrate, palladium acetylacetonate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2019} \\
Pt doped \ce{In2O3} & indium nitrate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2016} \\
Pd doped \ce{SnO2} & tin ethylhexanoate & xylene/acetonitrile (80/20) Vol.\% & nano particles & gas sensing & \cite{Liewhiran_2013} \\
rGO doped ZnO & Au and Pd & de-ionized water & nano fibers & gas sensing & \cite{Abideen2018} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Nasiri2016} \\
\ce{SnO2} & tin chloride & ammonia solution & nano powder & gas sensing & \cite{Xu1991} \\
Pd-ZnO & zinc nephthanate and palladium acetylacetonate & toluene and acetonitrile & nano particles & gas sensing & \cite{Liewhiran2007} \\
\ce{SnO2} and ZnO & tin oxide & nitric acid & nano powder & gas sensing & \cite{Yamazoe1983} \\
\ce{WO3} & ammonium metatungstate hydrate, polyvinylpyroolidone & dimethylformamide & nano fibers & gas sensing & \cite{Yang2021a} \\
\ce{TiO2} & titanium isopropoxide & ethanolamine & nano wires & gas sensing & \cite{Shooshtari2021} \\
Zn doped \ce{Fe2O3} & zinc nitrate hexahydrate, iron nitrate nanohydrate & de-ionized water & nano particles & gas sensing & \cite{Kim2011} \\
graphene loaded \ce{SnO2} & graphene, tin chloride dihydrate, polyvinyl acetate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Abideen2017} \\
Au-ZnO & HAuCl\textsubscript{4} & Aqueous ammonia solution & nano wires & gas sensing & \cite{Wang2013} \\
\ce{SnO2} & tin chloride dihydrate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Kim2016} \\
Ti doped ZnO & zinc ethylhexanoate, titanium tetraisopropoxide & xylene & nano particles & bio sensing & \cite{Guntner2016} \\
Pt/SnO\textsubscript{2} & tin ethylhexanoic acid, platinum acetylacetonate & toluene, & nano particles & gas sensing & \cite{Maedler2006} \\
NiO-ZnO & zinc nephthanate & xylene & nano particles & gas sensing & \cite{Chen2018} \\
Ag doped \ce{TiO2} & titanium isopropoxide, silver nitrate & ethanol & nano particles & photo detection & \cite{Yildirim2021} \\
Au & HAuCl\textsubscript{4} & ethanol & nano particles & photo detection & \cite{Thimsen2011} \\
MoO\textsubscript{3} & Mo Solid rod & de-ionized water & nano particles & gas sensing & \cite{Shafieyan2019} \\
Au & HAuCl\textsubscript{4} & ethanol & nano particles & photo detection & \cite{Fusco2019} \\
Au-\ce{TiO2} & HAuCl\textsubscript{4}, titanium isopropoxide & ethanol, xylene & nano particles & photo detection & \cite{Fusco2018a} \\
AgO-\ce{TiO2} & titanium isopropoxide, silver acetate & acetonitrile, ethyl hexanoic acid & nanohybrids & bio sensing & \cite{Guntner2023} \\
graphene Cu & copper naphthenate & xylene & nano particles/films & bio sensing & \cite{DiBernardo2020} \\
Au & gold chloride trihydrate & ethanol & nano particles & bio sensing & \cite{Dastidar2022} \\
Ag-\ce{SiO2} & silver nitrate, hexamethyldisiloxane & ethanol & nano particles & bio sensing & \cite{Sotiriou2013} \\
CuO & copper nitrate & - & nano particles & bio sensing & \cite{Yang2021} \\
Au & HAuCl\textsubscript{4} & ethanol & nano islands & bio sensing & \cite{Mondal2023} \\
CaP:Eu & calcium acetate hydrate, europium nitrate, tributyl phosphate & propionic acid & nano particles & bio sensing & \cite{Merkl2021} \\
\ce{SiO2}-coated \ce{Y2O3}:Tb\textsuperscript{3+} & yttrium nitrate, hexamethyl disiloxane & ethyl hexanoic acid, ethanol & nano particles & bio sensing and photo detection & \cite{Sotiriou2012} \\
enzyme minetic luminescent & cerium 2-ethylhexanoate, Eu-nitrate & methanol & nano particles & bio sensing & \cite{Pratsinis2017} \\
CuO-Cu\textsubscript{2}O & copper nitrate trihydrate & ethanol & nano particles & photo detection & \cite{Zhu2017} \\
nano silver \ce{SiO2} coating & Ag-benzoate, hexamethyl disiloxane & ethylhexanoic acid, benzonitrile & nano particles & bio sensing & \cite{Sotiriou2010} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Fang2017} \\
ZnO, \ce{SiO2}, \ce{TiO2} & zinc naphthenate, hexamethyldisiloxane, titanium isopropoxide & xylene & nano particles & photo detection & \cite{Nasiri2016a} \\
ZnO & zinc naphthenate & xylene & Nano particle film & photo detection & \cite{Nasiri2017} \\
\hline

\end{tabular}
\end{adjustbox}
\end{table}

Ich verwende ClassicThesisdas Paket. Hier sind die relevanten Teile des Codes von ClassicThesis.texund classicthesis-config.texfür minimale funktionierende Beispiele.

\documentclass[ twoside,openright,titlepage,numbers=noenddot,%1headlines,
                headinclude,footinclude,cleardoublepage=empty,abstract=on,
                BCOR=5mm,paper=a4,fontsize=11pt
                ]{scrreprt}

\DeclareFieldFormat[article]{number}{(#1)}


       
\PassOptionsToPackage{fleqn}{amsmath}       % math environments and more by the AMS
  \usepackage{amsmath}

\usepackage{amssymb} 
\usepackage{graphicx} 
\usepackage{scrhack} 
\usepackage{xspace} 
\PassOptionsToPackage{printonlyused,smaller}{acronym}
  \usepackage{acronym} 
   \def\bflabel#1{{\acsfont{#1}\hfill}}
  \def\aclabelfont#1{\acsfont{#1}}

\usepackage[figuresright]{rotating}
\usepackage{adjustbox}
\usepackage[version=4]{mhchem}
\PassOptionsToPackage{T1}{fontenc} 
    \usepackage{fontenc}     
\usepackage{textcomp}


\usepackage{tabularx} % better tables
  \setlength{\extrarowheight}{3pt} 
\newcommand{\tableheadline}[1]{\multicolumn{1}{l}{\spacedlowsmallcaps{#1}}}
\newcommand{\myfloatalign}{\centering} 
\usepackage{subfig}

\usepackage{booktabs}
\usepackage{xltabular}

\usepackage{array}
\usepackage{float}
\usepackage{multirow}
\usepackage{makecell}
\usepackage{caption}
\captionsetup{font=small}

Antwort1

  • Anstelle von Codefragmenten sollten Sie uns MWE (Minimal Working Example) mit Ihren Tabellen zeigen.
  • Das Seitenlayout hat großen Einfluss auf die Tabellenformatierung, insbesondere in Ihrem Fall, wo die Tabellen recht groß zu sein scheinen.
  • Eine Möglichkeit, bei der @Mico-Kommentare berücksichtigt und tabularrayPakete zum Entwerfen von Tabellen, enumitemPakete für Listen in Zellen und raged2ePakete zum Formatieren von Text in Zellen verwendet werden, ist:
\documentclass[11pt]{book}  % which document class you use?
\usepackage[margin=25mm]{geometry}       % determine your document page layout

\usepackage{ragged2e}
\usepackage{tabularray}
\UseTblrLibrary{booktabs, siunitx, varwidth}
\usepackage{enumitem}
\AtBeginEnvironment{table}%
{\setlist[itemize]{nosep,
                   leftmargin=*}
}
\usepackage[skip=1ex]{caption}

\begin{document}
    \begin{table}[!htb]
\caption[Fabrication techniques of sensing materials and their attributes]{Common sensing materials fabrication techniques with their general benefits and limitations.}
\label{table1-1}
    \footnotesize
\begin{tblr}{colspec = {@{} Q[l, wd=7em] X[cmd=\RaggedRight] X[l] X[l] @{}},
             stretch = -1,
             rowsep = 3pt,
             measure = vbox,
             }
    \toprule
Method  &   Description 
            &   Benefits 
                &   Limitations         \\
    \midrule
\SetCell[c=4]{c, font=\bfseries}    Wet synthesis methods         
        &   &   &   \\
Sol-gel &   A chemical process that involves the transition of a solution to a gel for material preparation under mild condition. 
            &   \begin{itemize}
            \item   Controlled composition 
            \item   Good homogeneity 
            \item   Low processing temperature 
            \item   Versatility 
                \end{itemize}
                &   \begin{itemize}
                \item   Long processing time
                \item   Size reduction upon drying
                \item   Requires careful control of parameters
                \item   Often require post-synthesis treatments
                    \end{itemize}   
                    \\
Hydrothermal / solvothermal 
        & Uses high temperature and pressure in aqueous (hydrothermal) or non-aqueous solutions (solvothermal).
            &   \begin{itemize}
            \item   High purity 
            \item   Crystallinity control 
            \item   low to moderate temperatures 
            \item   Scalable 
                \end{itemize}
                &   \begin{itemize}
                \item   High pressure equipment 
                \item   Limited range of particle size 
                \item   Energy-intensive 
                \item   Time-consuming 
                     \end{itemize}
                    \\
Electrodeposition 
    & Electrochemical process for depositing a layer/coating of material by means of electric current. 
            &   \begin{itemize}
            \item   Cost-effective
            \item   Good control over thickness
            \item   an coat complex shapes
            \item   Uniform deposition
                \end{itemize}
                &   \begin{itemize}
                \item   Limited to conductive substrates
                \item   May require post-treatment
                \item   Thickness limitations
                \item   Environmental concerns 
                     \end{itemize}
                    \\
Coprecipitation 
    & Precipitation of a solid from a solution containing multiple ions under controlled aqueous solutions and environments. 
            &   \begin{itemize}
            \item   Simple process
            \item   Scalable
            \item   Low cost
            \item   Good control over composition 
                \end{itemize}
                &   \begin{itemize}
                \item   Requires washing and filtration
                \item   Agglomeration issues
                \item   Poor impurity control
                \item   Poor particle size control
                     \end{itemize}
                    \\
\SetCell[c=4]{c, font=\bfseries}   Dry synthesis methods
        &   &   &   \\
Atomic layer deposition 
        & Thin film deposition technique based on the sequential use of a gas phase. 
            &   \begin{itemize}
            \item   Excellent control over thickness
            \item   High uniformity
            \item   Good conformality
            \item   High-quality films 
                \end{itemize}
                &   \begin{itemize}
                \item   Slow deposition rate
                \item   Limited to certain materials
                \item   Expensive equipment
                \item   Temperature sensitivity
                     \end{itemize}
                    \\
Sputtering 
        & Physical vapor deposition technique for thin film creation using suitable energy of a plasma. 
            &   \begin{itemize}
            \item   Versatile materials
            \item   Good adhesion
            \item   Scalable
            \item   Uniform thickness
            \item   Good control of film thickness 
                \end{itemize}
                &   \begin{itemize}
                \item   Costly equipment
                \item   May require high vacuum
                \item   Limited substrate size
                \item   Limit of precursor penetration depth 
                     \end{itemize}
                    \\
Chemical vapor deposition 
        & Depositing solid material from a vapor by a chemical reaction under controlled atmospheres. 
            &   \begin{itemize}
            \item   High purity and quality
            \item   Direct electrode assembly
            \item   Scalable
            \item   Wide material choice 
                \end{itemize}
                &   \begin{itemize}
                \item   High temperatures
            \item   Complex equipment
            \item   Safety concerns with gases
            \item   Uniformity challenges
            \item   Low production rate 
                     \end{itemize}
                    \\
Spray pyrolysis
        & Atomization of a precursor solution into droplets, followed by the evaporation of solvents and decomposition of the metal source in a heated reactor to generate particles. 
            &   \begin{itemize}
            \item    Simple setup
            \item   Cost-effective
            \item   Versatile materials
            \item   Large area deposition 
                \end{itemize}
                &   \begin{itemize}
                \item   Poor particle size control
                \item   Requires heat/high-temperature management
                \item   May produce rough surfaces
                \item   Limited film thickness
                     \end{itemize}
                    \\
Flame spray pyrolysis 
        & Atomization of a precursor solution into droplets, followed by the combustion of solvents and decomposition of a precursor(s) to create nuclei then form nanoparticles. 
            &   \begin{itemize}
            \item   High production rate
            \item   Good control of particle composition
            \item   Scalable
            \item   Versatile 
                \end{itemize}
                &   \begin{itemize}
                \item   High temperatures
                \item   Health \& safety concerns
                \item   Equipment cost
                \item   Particle agglomeration
                     \end{itemize}
                    \\
    \bottomrule
\end{tblr}
    \end{table}
\end{document}

Bildbeschreibung hier eingeben

Falls Ihre Seiten breitere Ränder haben, können Sie erwägen, Pakete auf landscapeSeiten zu schreiben oder lange Tabellen zu verwenden, die auf zwei oder mehr Seiten aufgeteilt werden können. Mehr dazu, wenn Sie Ihre Codefragmente auf MWE erweitern.

Die obige Lösung ist für das erste Codefragment. Für die anderen können Sie es auf ähnliche Weise selbst tun (bitte ein Problem pro Frage).

Bearbeiten:

  • Vielen Dank für die Bereitstellung eines Codefragments Ihrer Dokumentpräambel
  • leider funktioniert es nicht (siehe @Mico-Kommentar}
  • Abgesehen davon ist es (im Vergleich dazu, wie Leute normalerweise Präambeln schreiben) ziemlich seltsam (unnötig kompliziert). Zum Beispiel
\PassOptionsToPackage{T1}{fontenc} 
    \usepackage{fontenc}     

Sie können einfach schreiben

    \usepackage[t1]{fontenc}     
  • Da das Seitenlayout jetzt definiert ist, passt Ihre erste Tabelle nicht auf eine Seite. Mögliche Lösungen sind die Verwendung longtblrdes tabularrayPakets
  • In den folgenden Beispielen aus Ihrer Präambel berücksichtige ich nur die Dokumentklasse und die Pakete [T1]{fontenc},textcomp andmchem`
  • MWE mit longtblrhinzugefügtem Code für die zweite Tabelle lautet:
\documentclass[ twoside,openright,titlepage,numbers=noenddot,%1headlines,
                headinclude,footinclude,cleardoublepage=empty,abstract=on,
                BCOR=5mm,paper=a4,fontsize=11pt
                ]{scrreprt}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%
\usepackage{lipsum}% For dummy text. Don't use in a real document

\usepackage{fontenc}
\usepackage{textcomp}
\usepackage[version=4]{mhchem}

% new packages neede for writing of the first table
\usepackage{ragged2e}
\usepackage{tabularray}
\UseTblrLibrary{booktabs,       % load this package too 
                siunitx,        % load this package too 
                varwidth}
\SetTblrStyle{caption}{font=\footnotesize}
\SetTblrStyle{caption-tag}{font=\bfseries}
\SetTblrStyle{contfoot}{font=\footnotesize\itshape}

\usepackage{enumitem}
\AtBeginEnvironment{longtblr}%
{\setlist[itemize]{nosep,
                   leftmargin=*}
}
\usepackage[skip=1ex]{caption}

\begin{document}
\begin{longtblr}[
  entry = {[Fabrication techniques of sensing materials and their attributes},
caption = {Common sensing materials fabrication techniques with their general benefits and limitations.},
  label = {table1-1}
                ]{cells = {font=\footnotesize},
                  colspec = {@{} Q[l, wd=7em] X[cmd=\RaggedRight] X[l] X[l] @{}},
                  stretch = -1,
                  rowsep = 3pt,
                  measure = vbox,
                  rowhead = 1
             }
% table body is the same as in the first solution of your first table
\end{longtblr}

\lipsum[1]

%% Table 2 (added)
\begin{table}[!htb]
\footnotesize
\setlength\colwidthA{\widthof{functionalized \ce{ZnO}}} % <--- added
\setlength\colwidthB{\widthof{UV activated}}            % <--- added
\begin{talltblr}[
  entry = {Recent studies on room temperature VOC sensors.},
caption = {Comparison of recent studies of room temperature VOC sensors.},
  label = {table2-1},
note{} = {\begin{enumerate*}[label=\textbf{\alph*:}, itemjoin={{;\quad }}, itemjoin*={{,\quad and\quad }}]
            \item   $I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
            \item   $1-I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
            \item   $I_{\mathrm{ethanol}}/I_{\mathrm{air}}$
            \item   $1-I_{\mathrm{air}}/I_{\mathrm{ethanol}} \cdot 100$
            \item   Therm.: Thermal.
          \end{enumerate*}
          }
                    ]{cells = {font=\linespread{0.84}\selectfont},
                      colsep  = 2pt,
                      colspec = {@{} Q[l, m, wd=\colwidthA]
                                     c
                                     Q[c, wd=\colwidthB]
                                *{4}{X[c]}
                                     Q[l]
                                @{}},
                      }
    \toprule
Material
    & {Temp.\\(\unit{\celsius})}
        & External Catalyst
            & EtOH concentration (ppm)
                & Responsivity ($I_{\mathrm{EtOH}}/\allowbreak I_{\mathrm{air}}{-}1$) (sec)
                    & Limit of Detection
                        & Response\slash Recovery times
                            & Ref.                      \\
    \midrule
Thick porous \ce{ZnO} fractals
    & RT
        & Solar light
            & 0.05, 1
                & 2.22, 10.41
                    & 0.01
                        & 448/505, 300/360
                            & {This\\ work}             \\
\ce{ZnO-NiO} nanoheterjunctions
    & RT
        & Solar light
            & 0.1
                & 0.77
                    & 0.01
                        & N/A
                            & [9b]                  \\
\ce{ZnO} nanorods
    & RT
        & UV light
            & 200
                & 4.24\TblrNote{a}
                    & N/A
                        & 52/192
                            & [18]                  \\
\ce{Cr2O3} functionalized \ce{ZnO}
    & RT
        & UV light
            & 200
                & 10.95\TblrNote{a}
                    & N/A
                        & 26/110
                            & [18]                  \\
\ce{$\alpha$-Fe2O3}/\ce{ZnO} nanowires
    & RT
        & N/A
            & 100
                & 9.1\%
                    & 100
                        & N/A
                            & [30a]                 \\
Au-modified \ce{ZnO} nanowire
    & RT
        & N/A
            & 20
                & ~10\TblrNote{b}
                    & N/A
                        & $-$/5
                            & [30b]                 \\
\ce{ZnO} nano disks
    & RT
        & Therm.\TblrNote{e} and UV activated
            & 100
                & 0.17
                    & 20
                        & 11/15
                            & [39]                  \\
Au-\ce{ZnO} nanofibers
    & RT
        & UV
            & 100
                & 1.18\TblrNote{c}
                    & N/A
                        & N/A
                            & [40] \\
\ce{ZnO} nanotubes
    & RT
        & N/A
            & 10
                & 30.91\TblrNote{d}
                    & N/A
                        & 263/80
                            & [41] \\
    \bottomrule
\end{talltblr}
    \end{table}

\end{document}

Bildbeschreibung hier eingeben

Bildbeschreibung hier eingeben

Antwort2

Hier ist eine Reihe von Lösungen für alle vier Tabellen. Beachten Sie, dass hier nicht mit dem adjustboxVorschlaghammer gearbeitet wird. Stattdessen werden tabularx(für einseitige Tabellen) und xltabular(für mehrseitige Tabellen) Umgebungen verwendet, wobei der Zeilenumbruch für alle Spalten aktiviert ist.

Insgesamt sind für den Satz der vier Tabellen mindestens sechs Seiten erforderlich; für Tabelle 4 allein sind drei Seiten erforderlich.

Bildbeschreibung hier eingeben

Bildbeschreibung hier eingeben

Bildbeschreibung hier eingeben

\documentclass{article}
\usepackage[letterpaper,margin=1in]{geometry} % set page parameters appropriately
\usepackage{adjustbox,makecell,mhchem}


% new 
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage{xltabular,ragged2e,booktabs,calc,amsmath}
\newcolumntype{L}[1]{%
  >{\RaggedRight\hspace{0pt}\hsize=#1\hsize\linewidth=\hsize}X}
\newcolumntype{C}{%
  >{\Centering\hspace{0pt}}X}
\newcolumntype{P}[1]{>{\RaggedRight\hspace{0pt}}p{#1}}
  
\usepackage{enumitem}
\newlist{myenum}{enumerate}{1}
\setlist[myenum,1]{label={-},nosep,left=0pt,
            before={\begin{minipage}[t]{\hsize}},
            after={\end{minipage}}}
            
\usepackage{siunitx} % for \qty, \unit, and \celsius macros

\usepackage[para,flushleft]{threeparttable}
\renewcommand{\TPTtagStyle}{\textit}

\usepackage{newpxtext,newpxmath} % optional (Palatino clone)

% provide a list of hypenation exceptions (mainly for chemical terms)
\hyphenation{aceto-nitrile acetyl-acetonate array arrays
benzo-nitrile
dimethyl-form-amide
ethyl-hexa-noate eth-oxide europ-ium
hexa-hydrate hexa-methyl hexa-methyl-disiloxane 
iso-prop-oxide 
penta-hydrate photo-activation poly-vinyl poly-vinyl-pyro-olidone 
tetra-iso-prop-oxide tri-butyl tri-hydrate}

\begin{document}

\setcellgapes{2pt}\makegapedcells
\setlength{\LTcapwidth}{\textwidth}

%% Table 1

\begin{xltabular}{\textwidth}{@{} L{0.55} *{3}{L{1.15}} @{}}
\caption[Fabrication techniques of sensing materials and their attributes]{Common sensing materials fabrication techniques with their general benefits and limitations.}
\label{table1-1} \\
\toprule
Method & Description & Benefits & Limitations \\
\midrule
\endfirsthead

\multicolumn{4}{@{}l@{}}{Table \thetable, cont'd}\\
\toprule
Method & Description & Benefits & Limitations \\
\midrule
\endhead

\midrule
\multicolumn{4}{r@{}}{\itshape continued on next page}
\endfoot

\bottomrule
\endlastfoot


\multicolumn{4}{@{}l}{\textbf{Wet synthesis methods}}\\

Sol-gel 
& A chemical process that involves the transition of a solution to a gel for material preparation under mild condition. 
& 
\begin{myenum}
\item Controlled composition
\item Good homogeneity
\item Low processing temperature
\item Versatility
\end{myenum} 
&
\begin{myenum}
\item Long processing time
\item Size reduction upon drying
\item Requires careful control of parameters
item Often require post-synthesis treatments 
\end{myenum}\\

Hydrothermal\slash solvo-thermal 
& Uses high temperature and pressure in aqueous (hydrothermal) or non-aqueous solutions (solvothermal). 
&
\begin{myenum}
\item High purity
\item Crystallinity control
\item low to moderate temperatures
\item Scalable 
\end{myenum}
&
\begin{myenum}
\item High pressure equipment
\item Limited range of particle size
\item Energy-intensive
\item Time-consuming 
\end{myenum}\\

Electro-deposition 
& Electrochemical process for depositing a layer\slash coating of material by means of electric current. 
&
\begin{myenum}
\item Cost-effective
\item Good control over thickness
\item Can coat complex shapes
\item Uniform deposition 
\end{myenum}
&
\begin{myenum}
\item Limited to conductive substrates
\item May require post-treatment
\item Thickness limitations
\item Environmental concerns 
\end{myenum}\\

Coprecipi-tation 
& Precipitation of a solid from a solution containing multiple ions under controlled aqueous solutions and environments. 
&
\begin{myenum}
\item Simple process
\item Scalable
\item Low cost
\item Good control over composition 
\end{myenum}
&
\begin{myenum}
\item Requires washing and filtration
\item Agglomeration issues
\item Poor impurity control
\item Poor particle size control 
\end{myenum}\\

\addlinespace
\multicolumn{4}{@{}l}{\textbf{Dry synthesis methods}}\\

Atomic layer deposition 
& Thin film deposition technique based on the sequential use of a gas phase. 
&
\begin{myenum}
\item Excellent control over thickness
\item High uniformity
\item Good conformality
\item High-quality films 
\end{myenum}
&
\begin{myenum}
\item Slow deposition rate
\item Limited to certain materials
\item Expensive equipment
\item Temperature sensitivity 
\end{myenum}\\

Sputtering 
& Physical vapor deposition technique for thin film creation using suitable energy of a plasma. 
&
\begin{myenum}
\item Versatile materials
\item Good adhesion
\item Scalable
\item Uniform thickness
\item Good control of film thickness
\end{myenum}
&
\begin{myenum}
\item Costly equipment
\item May require high vacuum
\item Limited substrate size
\item Limit of precursor penetration depth 
\end{myenum}\\

Chemical vapor deposition 
& Depositing solid material from a vapor by a chemical reaction under controlled atmospheres. 
&
\begin{myenum}
\item High purity and quality
\item Direct electrode assembly
\item Scalable
\item Wide material choice
\end{myenum} 
&
\begin{myenum}
\item High temperatures
\item Complex equipment
\item Safety concerns with gases
\item Uniformity challenges
\item Low production rate 
\end{myenum}\\

Spray pyrolysis 
& Atomization of a precursor solution into droplets, followed by the evaporation of solvents and decomposition of the metal source in a heated reactor to generate particles. 
&
\begin{myenum}
\item Simple setup
\item Cost-effective
\item Versatile materials
\item Large area deposition
\end{myenum} 
&
\begin{myenum}
\item Poor particle size control
\item Requires heat/high-temperature management
\item May produce rough surfaces
\item Limited film thickness 
\end{myenum}\\

Flame spray pyrolysis 
& Atomization of a precursor solution into droplets, followed by the combustion of solvents and decomposition of a precursor(s) to create nuclei then form nanoparticles. 
&
\begin{myenum}
\item High production rate
\item Good control of particle composition
\item Scalable
\item Versatile 
\end{myenum}
&
\begin{myenum}
\item High temperatures
\item Health \& safety concerns
\item Equipment cost
\item Particle agglomeration  
\end{myenum}\\

\end{xltabular}
%%\end{adjustbox}




%% Table 2
\begin{table}[!htb]
\setlength{\tabcolsep}{3pt}

\begin{threeparttable}
\caption[Recent studies on room temperature VOC sensors.]{Comparison of recent studies of room temperature VOC sensors.}
\label{table2-1}

\begin{tabularx}{\textwidth}{@{} 
   P{\widthof{Thick porous \ce{ZnO} fractals}} 
   c 
   CCCCC 
   P{\widthof{work}} @{}}
 
\toprule
Material & \makecell[t]{Temp.\\(\unit{\celsius})} & External Catalyst & EtOH concentration (ppm) & Responsivity ($I_{\mathrm{EtOH}}/\allowbreak I_{\mathrm{air}}{-}1$) (sec)  & Limit of Detection & Response\slash Recovery times & Ref. \\
\midrule
 
Thick porous \ce{ZnO} fractals & RT & Solar light & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
  \ce{ZnO-NiO} nanoheterjunctions & RT & Solar light & 0.1 & 0.77 & 0.01 & N/A & [9b] \\
  \ce{ZnO} nanorods & RT & UV light & 200 & 4.24\tnote{a} & N/A & 52/192 & [18] \\
  \ce{Cr2O3} functionalized \ce{ZnO} & RT & UV light & 200 & 10.95\tnote{a} & N/A & 26/110 & [18] \\
  \ce{$\alpha$-Fe2O3}/\ce{ZnO} nanowires & RT & N/A & 100 & 9.1\% & 100 & N/A & [30a] \\
  Au-modified \ce{ZnO} nanowire & RT & N/A & 20 & ~10\tnote{b} & N/A & $-$/5 & [30b] \\
  \ce{ZnO} nano disks & RT & Thermally and UV activated & 100 & 0.17 & 20 & 11/15 & [39] \\
  Au-\ce{ZnO} nanofibers & RT & UV & 100 & 1.18\tnote{c} & N/A & N/A & [40] \\
  \ce{ZnO} nanotubes & RT & N/A & 10 & 30.91\tnote{d} & N/A & 263/80 & [41] \\
\bottomrule
\end{tabularx}

\smallskip\footnotesize
\begin{tablenotes}
\item[a] $I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
\item[b] $1-I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
\item[c] $I_{\mathrm{ethanol}}/I_{\mathrm{air}}$
\item[d] $1-I_{\mathrm{air}}/I_{\mathrm{ethanol}} \cdot 100$
\end{tablenotes}
\end{threeparttable}
\end{table}



%% Table 3
\begin{table}[!htb]
\setlength{\tabcolsep}{3pt}

\begin{threeparttable}

\caption[Recent ethanol sensors with oxygen defects.]{Comparison of recently developed ethanol sensors with oxygen defects.}
\label{table2-2}
 
\begin{tabularx}{\textwidth}{@{} 
   P{\widthof{Thick Porous \ce{ZnO}}}
   c 
   CCCCC
   P{\widthof{work}}
   @{}}
\toprule
Material & \makecell[t]{Sensing\\Temp.\\(\unit{\celsius})} & Oxygen Vacancy Introduction & EtOH Concentration (ppm) & Responsivity ($I_{\mathrm{EtOH}}/\allowbreak I_{\mathrm{air}}{-}1$) & Limit of Detection (ppm) & Response\slash Recovery Times (sec) & Ref. \\
\midrule
Thick porous \ce{ZnO} fractals & RT & DUV Photoactivation at \qty{200}{\celsius} & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
Thick porous \ce{ZnO} fractals & 150 & DUV Photoactivation at \qty{200}{\celsius} & 0.05, 1 & 0.97, 15.9 & 0.005 & 371/486, 260/312 & This work \\
\ce{ZnO} nanorod arrays & 400 & \ce{H2O2} thermal treatment at \qty{400}{\celsius} & 3 & ~70\tnote{a} & 1 & N/A & [35a] \\
Rutile \ce{SnO2} nanostructures & 190 & Reduction by \ce{NaBH4} & 20 & 37.2\tnote{a} & N/A & 42/17 & [43] \\
\ce{SnO2} nano-columns & RT & Reducing environment (Argon) & 400 & 1.27 & N/A & N/A & [42] \\
\ce{In2O3} octahedral particles & 200 & Phase transformation process from \ce{In(OH)3} at \qty{300}{\celsius} & 1000 & 610\tnote{a} & N/A & 1-2/15-20 & [15] \\
\ce{ZnO} nanosheets & 330 & Preferential [0001] growth direction at \qty{500}{\celsius} & 50 & 80\tnote{a} & N/A & N/A & [44] \\
Co-doped \ce{ZnO} microspheres & 220 & Co-doping at \qty{400}{\celsius} & 5 & 3.3\tnote{a} & N/A & N/A & [45] \\
Ce-doped \ce{ZnO} nanostructures & 300 & Ce-doping at \qty{450}{\celsius} & 100 & 72.6\tnote{a} & N/A & 9/3 & [46] \\
\ce{ZnO}/\ce{SnO2} composite hollow spheres & 225 & Hydrothermal process, calcination at \qty{400}{\celsius} & 30 & 34.8\tnote{a} & 0.5 & 1/-- & [47] \\
\bottomrule
\end{tabularx}

\smallskip\footnotesize
\begin{tablenotes}
\item[a] $I_{\mathrm{ethanol}}/I_{\mathrm{air}}$
\end{tablenotes}
\end{threeparttable}
\end{table}

\clearpage


%% Table 4
\begin{xltabular}{\textwidth}{@{} 
  L{0.9}  % 0.9+1.31+3*0.93 = 5 = # of X-type columns
  %% no linebreak allowed in '\ce{(NH4)6H2OW12.xH2O}'
  L{1.31} 
  *{3}{L{0.93}} 
  P{\widthof{work}} @{}}

\caption{Summary of materials, precursors, solvents, and morphologies for various sensing applications.} \label{table:materials}\\
\toprule
Material & Precursor & Solvent & Nanostructure Morphology & Sensing Application & Ref. \\
\midrule
\endfirsthead

Table \thetable, cont'd\\
\toprule
Material & Precursor & Solvent & Nanostructure Morphology & Sensing Application & Ref. \\
\midrule
\endhead

\midrule
\multicolumn{6}{r@{}}{\itshape continued on next page}
\endfoot

\bottomrule
\endlastfoot


La-doped \ce{WO3} & \ce{La(NO3)3.6H2O} & ethanol & nano particles & gas sensing & \cite{Zhang_2022} \\
\ce{WO3} & \ce{(NH4)6H2OW12.xH2O} & ethanol & nano particles (crystals) & gas sensing & \cite{Wu_2022} \\
\ce{Zn2SnO4} & ZTO & ethanol & nano particles  & photo detection & \cite{Karthick_2023} \\
ZnO & zinc naphthenate & m-xylene & nano particles & photo detection & \cite{Nasiri2015} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano particles & gas sensing & \cite{Keskinen_2009} \\
\ce{SnO2} & ethylhexanoate  & ethanol & nano particles & gas sensing & \cite{Sahm_2004} \\
Pt-loaded \ce{WO3} & tungsten ethoxide & ethanol & nano particles & gas sensing & \cite{Samerjai2011} \\
Nb-ZnO & zinc naphthenate & toluene\slash methanol (70/30) vol.\% & & gas sensing & \cite{Kruefu_2011} \\
Nb-doped \ce{TiO2} & titanium isopropoxide & xylene\slash acetonitrile & nano powders & gas sensing & \cite{Phanichphant_2011} \\
\ce{TiO2} & titanium tetra isopropoxide & Xylene\slash acetonitrile & nano particles and films & gas sensing & \cite{Teleki_2006} \\
\ce{WO3} & ammonium tungsten hydrate & glycol\slash ethanol & nano particles & bio sensing & \cite{Wang_2008} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano powder & gas sensing & \cite{Liewhiran_2012} \\
Ru-\ce{SnO2} & tin ethylhexanoate & xylene & Nano powders\slash thick films & gas sensing & \cite{Liewhiran_2009} \\
Pt/ZnO & zinc naphthenate & xylene & Nano powder\slash thick films & gas sensing & \cite{Tamaekong2009} \\
Pt-loaded ZnO & zinc naphthenate & xylene & Nano particles\slash thick films  & gas sensing & \cite{Tamaekong_2011} \\
Pd-ZnO & zinc naphthenate & toluene\slash acetonitrile (80/20) vol.\% & nano particles\slash thick films & gas sensing & \cite{Liewhiran_2008} \\
Nb- and Cu-doped \ce{TiO2} & titanium tetra isopropoxide & xylene & nano particles & gas sensing & \cite{TELEKI_2008} \\
\ce{Bi2WO6} & bismuth nitrate pentahydrate, tungsten ethoxide & ethanol, acetic acid & nano particles & gas sensing & \cite{Punginsang_2019} \\
\ce{PdO_x}-doped \ce{In2O3} & indium nitrate hydrate, palladium acetylacetonate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2019} \\
Pt-doped \ce{In2O3} & indium nitrate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2016} \\
Pd-doped \ce{SnO2} & tin ethylhexanoate & xylene\slash acetonitrile (80/20) vol.\% & nano particles & gas sensing & \cite{Liewhiran_2013} \\
rGO-doped \ce{ZnO} & Au and Pd & de-ionized water & nano fibers & gas sensing & \cite{Abideen2018} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Nasiri2016} \\
\ce{SnO2} & tin chloride & ammonia solution & nano powder & gas sensing & \cite{Xu1991} \\
Pd-ZnO & zinc nephthanate and palladium acetylacetonate & toluene and acetonitrile & nano particles & gas sensing & \cite{Liewhiran2007} \\
\ce{SnO2} and \ce{ZnO} & tin oxide & nitric acid & nano powder & gas sensing & \cite{Yamazoe1983} \\
\ce{WO3} & ammonium metatungstate hydrate, polyvinylpyroolidone & dimethylformamide & nano fibers & gas sensing & \cite{Yang2021a} \\
\ce{TiO2} & titanium isopropoxide & ethanolamine & nano wires & gas sensing & \cite{Shooshtari2021} \\
Zn-doped \ce{Fe2O3} & zinc nitrate hexahydrate, iron nitrate nanohydrate & de-ionized water & nano particles & gas sensing & \cite{Kim2011} \\
graphene loaded \ce{SnO2} & graphene, tin chloride dihydrate, polyvinyl acetate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Abideen2017} \\
\ce{Au}-\ce{ZnO} & \ce{HAuCl4} & Aqueous ammonia solution & nano wires & gas sensing & \cite{Wang2013} \\
\ce{SnO2} & tin chloride dihydrate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Kim2016} \\
Ti-doped ZnO & zinc ethylhexanoate, titanium tetraisopropoxide & xylene & nano particles & bio sensing & \cite{Guntner2016} \\
Pt/\ce{SnO2} & tin ethylhexanoic acid, platinum acetylacetonate & toluene, & nano particles & gas sensing & \cite{Maedler2006} \\
NiO-ZnO & zinc nephthanate & xylene & nano particles & gas sensing & \cite{Chen2018} \\
Ag-doped \ce{TiO2} & titanium isopropoxide, silver nitrate & ethanol & nano particles & photo detection & \cite{Yildirim2021} \\
Au & \ce{HAuCl4} & ethanol & nano particles & photo detection & \cite{Thimsen2011} \\
\ce{MoO3} & Mo Solid rod & de-ionized water & nano particles & gas sensing & \cite{Shafieyan2019} \\
Au & \ce{HAuCl4} & ethanol & nano particles & photo detection & \cite{Fusco2019} \\
Au-\ce{TiO2} & \ce{HAuCl4}, titanium isopropoxide & ethanol, xylene & nano particles & photo detection & \cite{Fusco2018a} \\
AgO-\ce{TiO2} & titanium isopropoxide, silver acetate & acetonitrile, ethyl hexanoic acid & nanohybrids & bio sensing & \cite{Guntner2023} \\
graphene Cu & copper naphthenate & xylene & nano particles\slash films & bio sensing & \cite{DiBernardo2020} \\
Au & gold chloride trihydrate & ethanol & nano particles & bio sensing & \cite{Dastidar2022} \\
Ag-\ce{SiO2} & silver nitrate, hexamethyldisiloxane & ethanol & nano particles & bio sensing & \cite{Sotiriou2013} \\
CuO & copper nitrate & -- & nano particles & bio sensing & \cite{Yang2021} \\
Au & \ce{HAuCl4} & ethanol & nano islands & bio sensing & \cite{Mondal2023} \\
\ce{CaP}:\ce{Eu} & calcium acetate hydrate, europium nitrate, tributyl phosphate & propionic acid & nano particles & bio sensing & \cite{Merkl2021} \\
\ce{SiO2}-coated \ce{Y2O3}:\ce{Tb^{3+}} & yttrium nitrate, hexamethyl disiloxane & ethyl hexanoic acid, ethanol & nano particles & bio sensing and photo detection & \cite{Sotiriou2012} \\
enzyme minetic luminescent & cerium 2\nobreakdash-\hspace{0pt}ethylhexanoate, Eu-nitrate & methanol & nano particles & bio sensing & \cite{Pratsinis2017} \\
CuO-\ce{Cu2O} & copper nitrate trihydrate & ethanol & nano particles & photo detection & \cite{Zhu2017} \\
nano silver \ce{SiO2} coating & Ag-benzoate, hexamethyl disiloxane & ethylhexanoic acid, benzonitrile & nano particles & bio sensing & \cite{Sotiriou2010} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Fang2017} \\
ZnO, \ce{SiO2}, \ce{TiO2} & zinc naphthenate, hexamethyldisiloxane, titanium isopropoxide & xylene & nano particles & photo detection & \cite{Nasiri2016a} \\
ZnO & zinc naphthenate & xylene & nano particle film & photo detection & \cite{Nasiri2017} \\


\end{xltabular}

\end{document}

verwandte Informationen