
Ich habe eine Abbildung, die drei Unterabbildungen mit Bildunterschriften und eine Bildunterschrift für die gesamte Abbildung enthält, die insgesamt mehr als eine ganze Seite einnimmt.
Ich kann die Geometrie für die jeweilige Seite ändern, auf der die Abbildung erscheint, damit sie passt, aber dann hinterlässt LaTex Leerzeichen, da die Geometrieänderung an der Stelle, an der sie eingefügt wird, einen Seitenumbruch zu erzeugen scheint. Ich habe versucht, die Geometrieänderungen in den Float einzufügen, damit LaTex ihn wie einen Float behandeln und nur die Größe der Seite ändern kann, auf der die Abbildung zufällig erscheint, aber das hat mir nur eine Reihe von Fehlern beschert.
Ich habe auch versucht, die Abbildung genau dort im Dokument zu platzieren, wo ich sie haben wollte, aber das ist in einem Absatz, der durch die Abbildung unterbrochen wird. Um sie optisch so erscheinen zu lassen, als ob der Absatz nach der Abbildung weitergeht, habe ich versucht, \newline
die letzte Zeile der Seite vor der Abbildung zu verlängern und \noindent
auf der nächsten, damit sie erscheint, wenn es keinen neuen Absatz gibt, aber dann \newline
beginnt meiner Meinung nach eine neue Zeile, was zu einer komplett leeren Seite vor meiner Abbildung führt, was absolut nicht das ist, was ich will.
\makebox
Ich habe auch versucht, den Befehl zu verwenden . Das funktioniert, wenn ich jedes subfigure
in eine Box einfüge, aber dann weiß ich nicht, wie ich den oberen Rand verkleinern kann, der nötig ist, damit es passt. Ich muss auch die Überschrift für die ganze Abbildung breiter machen, aber wenn ich eine Box erstelle, die breiter ist als , \textwidth
sind die Dinge nicht mehr zentriert, und wenn ich versuche, die ganze Abbildung in die zu setzen makebox
, wird sie nicht kompiliert.
Gibt es eine Möglichkeit, einen Float größer als eine Seite zu machen, damit er sich gut verhält, oder eine Zeile so zu strecken, dass sie passt \textwidth
, ohne eine neue Zeile zu beginnen, wie \newline
es anscheinend der Fall ist?
Da meine Frage etwas unklar zu sein scheint, glaube ich, dass ich einen Beispielcode angeben sollte. Es tut mir leid, dass er so lang ist, aber wenn Sie ihn kompilieren, ist es meiner Meinung nach ziemlich einfach zu verstehen, wo mein Problem liegt. Wenn nicht, sagen Sie es mir bitte und ich werde versuchen, besser zu fragen. Ich weiß nicht, wie ich das kompilierte Dokument zur Frage hinzufügen kann, sonst würde ich es tun.
\documentclass[twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{sectsty}
\usepackage[margin=1in]{geometry}
\usepackage{braket}
\usepackage{amsmath}
\usepackage[demo]{graphicx}
\usepackage{subcaption}
\usepackage{float}
\usepackage{tikz}
\usepackage{lipsum}
\begin{document}
\section{See last part of this section}
\lipsum[1-8]
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{And then there is some more text which I made large and bold here so you wont miss is. The important thing is that there is a paragraph right before the figure, and I don't what that to leave a pretty much empty page as it has here.}}
\onecolumn
\begin{figure}
\centering
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{\textbf{\large{All captions to this figure are really long, and at you can see they don't fit into the page.}} Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{Another really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{A this really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\onecolumn
\caption{And a caption for the whole figure. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\twocolumn
\end{figure}
\twocolumn
\section{Then I tried the geometry package, please read the last paragraph also here}
\lipsum[1-7]
\vspace{100pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{The geometry package has worked best so far.}} Then I can make the figure fit by changing the top margin. However I still have the
\newgeometry{textwidth=19.5cm,textheight=29cm,top=1.5cm, bottom=3cm}
\begin{figure*}
\centering
\includegraphics[scale=1]{x}
\caption{Let's skip the figure as you now know why it is too big.}
\end{figure*}
\restoregeometry
problem that the figure does not fit nicely within the paragraph, but a lot of white space appears. I tried to avoid this by placing the figure exactly where I wanted it within the paragraph. As you can see, the paragraph is broken by the figure, which does not seem to be allowed to float and just change the geometry of the page it happens to appear on. Do you see my problem?
\section{Then I tried to avoid the breaking of the paragraph, at least visually}
\lipsum[1-6]
\vspace{120pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
So I tried to visually make it seem as there was not break in the paragraph by using the \textbackslash newline and \textbackslash noindent commands, but as you can see, this gave me an entire blank page before the figure which I \newline
\newgeometry{textwidth=19.5cm,textheight=29cm,top=1.5cm, bottom=3cm}
\begin{figure*}
\centering
\includegraphics[scale=1]{x}
\caption{I've been using the starred figure because I want the figure to span the entire page, as I have a twocolumn environment otherwise.}
\end{figure*}
\restoregeometry
\noindent don't know how to get rid of!
I hope my question(s) are more clear now. And I am sorry for all the messy code, but I do think it is essential for understanding my problem. I hope you can help me. :)
\end{document}
Antwort1
die leere Seite nach Ihrem fettgedruckten Absatz liegt einfach daran, dass Sie einen Seitenumbruch mit erzwungen haben \onecolumn
. Ich bin mir nicht ganz sicher, welches Layout Sie möchten, aber Sie möchten erzwungene Umbrüche vermeiden und das *
Formular verwenden, um seitenweite Floats zuzulassen, etwa wie
\documentclass[twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{sectsty}
\usepackage[margin=1in]{geometry}
\usepackage{braket}
\usepackage{amsmath}
\usepackage[demo]{graphicx}
\usepackage{subcaption}
\usepackage{float}
\usepackage{tikz}
\usepackage{lipsum}
\newenvironment{outdent}
{\list{}{\leftmargin-1cm
\rightmargin\leftmargin}%
\item\relax}
{\endlist}
\begin{document}
\section{See last part of this section}
\lipsum[1-8]
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{And then there is some more text which I made large and bold here so you wont miss is. The important thing is that there is a paragraph right before the figure, and I don't what that to leave a pretty much empty page as it has here.}}
\begin{figure*}
\vspace*{-50pt}
\begin{outdent}
\centering
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{\textbf{\large{All captions to this figure are really long, and at you can see they don't fit into the page.}} Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{Another really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\makebox[1\textwidth][c]{
\begin{subfigure}{1.2\textwidth}
\begin{tikzpicture}
\node at(0,0) {\includegraphics[width=0.5\textwidth]{x}};
\node at(0.5\textwidth,0) {\includegraphics[width=0.5\textwidth]{x}};
\end{tikzpicture}
\caption{A this really long caption. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\end{subfigure}}
\caption{And a caption for the whole figure. Readout spectra of the transitions from $\ket{\pm 5/2 g}$ to all three excited states and the transition $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz in the spectra. (left) The three peaks corresponding to the transitions $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$, $\ket{\pm 5/2 g} \rightarrow \ket{\pm 3/2 e}$ and $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$, positioned at 0, 2 and 6 MHz respectively, are present as expected. However, there is also a peak at $\ket{\pm 1/2 g} \rightarrow \ket{\pm 5/2 e}$ at 4 MHz. This comes from some unwanted ion class, and must therefore be some other transition than $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$. (right) After burning at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ the two first peaks disappear. The last one, corresponding to $\ket{\pm 5/2 g} \rightarrow \ket{\pm 5/2 e}$ is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions class. The peak at $\ket{\pm 5/2 g} \rightarrow \ket{\pm 1/2 e}$ is still there and has become bigger, as expected.}
\vspace*{-5pt}
\end{outdent}
\end{figure*}
\section{Then I tried the geometry package, please read the last paragraph also here}
\lipsum[1-7]
\vspace{100pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
\textbf{\large{The geometry package has worked best so far.}} Then I can make the figure fit by changing the top margin. However I still have the
\begin{figure*}
\begin{outdent}
\centering
\includegraphics[scale=1]{x}
\caption{Let's skip the figure as you now know why it is too big.}
\end{outdent}
\end{figure*}
problem that the figure does not fit nicely within the paragraph, but a lot of white space appears. I tried to avoid this by placing the figure exactly where I wanted it within the paragraph. As you can see, the paragraph is broken by the figure, which does not seem to be allowed to float and just change the geometry of the page it happens to appear on. Do you see my problem?
\section{Then I tried to avoid the breaking of the paragraph, at least visually}
\lipsum[1-6]
\vspace{120pt}
\noindent\makebox[\linewidth]{\rule{0.5\textwidth}{1pt}}
So I tried to visually make it seem as there was not break in the paragraph by using the \textbackslash newline and \textbackslash noindent commands, but as you can see, this gave me an entire blank page before the figure which I \newline
\begin{figure*}
\centering
\includegraphics[scale=1]{x}
\caption{I've been using the starred figure because I want the figure to span the entire page, as I have a twocolumn environment otherwise.}
\end{figure*}
\noindent don't know how to get rid of!
I hope my question(s) are more clear now. And I am sorry for all the messy code, but I do think it is essential for understanding my problem. I hope you can help me. :)
\end{document}
Antwort2
Im MWE \lipsum[4]
beginnt der Text auf Seite 1, wodurch der leere Raum am Seitenende vermieden wird, auf den sich der OP bezog.
Ich habe ein verwendet, \makebox[\textwidth]{}
um ein besonders breites Bild über die horizontalen Ränder hinaus zu erweitern. Ich habe ein verwendet, um \smash
die vertikale Ausdehnung des Bildes einzuschränken. Dadurch bliebe die Beschriftung jedoch vertikal in der Seitenmitte, daher musste ich \rule
dem Bild ein hinzufügen minipage
, um die Beschriftung nach unten zu verschieben. Die Ausdehnung der Regel ist kleiner als \textheight
und bestimmt die endgültige Position der Beschriftung.
\documentclass[11pt]{report}
\usepackage[demo]{graphicx}
\usepackage{lipsum}
\begin{document}
\lipsum[1-3]
\begin{figure}[p]
\begin{minipage}{\textwidth}
\rule{0pt}{7.5in}%
\smash{\makebox[\textwidth]{\includegraphics[width=7in,height=8.5in]{x}}}
\end{minipage}
\caption{this is my figure caption}
\end{figure}
\lipsum[4-9]
\end{document}