
Ich habe das folgende Flussdiagramm
\begin{figure}[ht]
\centering
\setlength\abovedisplayskip{2pt}%
\begin{forest}
for tree = {
draw,
text width=54mm,
font=\scriptsize,
%
grow = south,
forked edge,
s sep = 6mm,
l sep = 4mm,
fork sep = 2mm,
if level<= 2{text centered}{},
tier/.option = level, % for aligning nodes to levels
%
edge = {-{Stealth[length=3pt]}, semithick},
}
[Feynman Integral
[Schwinger Parametrization
%%%% left branch
[Original Method of Brackets
[\textbf{Rule 1}: \underline{Expanding Exponential}
\[{e^{-A} = \sum_{n=0}^{\infty}\mfrac{(-1)^n A^n}{\Gamma(1+n)}}\]
[\textbf{Rule 2}:\underline{ Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm+ a_r)^{\alpha}= \\
\sum_{\mathclap{m_1,\dotsc,m_r}} \phi_{m_1,\dotsc,m_r}
a_{1}^{m_1}\dotsm a_{r}^{m_r}\\
\mfrac{\langle -\alpha+m_1+\dotsm+m_r\rangle}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
\[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle} \]
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
\langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
\cdots \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
\end{multline*}}
is written as
{\begin{align*}
&\mfrac{1}{|detA|}\sum_{n_{s+1}\cdots n_{r}} f(n_{1}^{*},\cdot\cdot,n_{s}^{*},n_{s+1},\cdot\cdot,n_{r}) \\
&\cdot\Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{s}^{*})\Gamma(-n_{s+1})\dotsm\Gamma(-n_{r})
\end{align*}}
provided $det\;A$ is not zero
]
]
]
]
]
[Modified Method of Brackets
[\textbf{Rule 1}: \underline{Expanding Exponential}
{\begin{equation*}
e^{-A} = \oint \mathrm{\frac{dz}{2\pi i}} (A)^z\Gamma(-z)
\end{equation*}}
[\textbf{Rule 2}: \underline{Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm + a_r)^{\alpha} = \\
\oint\frac{dz_1}{2 \pi i}\dots\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\
\langle -\alpha+z_1+\dotsm + z_r\rangle\frac{\Gamma(-z_1)\dotsm\Gamma(-z_2)}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
\[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle} \]
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\oint\frac{dz_{1}}{2 \pi i}\cdots \oint\frac{dz_{r}}{2 \pi i}f(z_1,\dotsc,z_r)\\
\langle a_{11}z_{1}+\dotsm+a_{1r}z_{r}+c_{1}\rangle\\
\cdots \langle a_{s1}z_{1}+\dotsm+a_{sr}z_{r}+c_{r}\rangle
\end{multline*}}
is written as
{\begin{align*}
& \mfrac{1}{|detA|}\prod_{i=s+1}^r\oint\frac{dz_i}{2 \pi i}f(z_{1}^{*},\cdot\cdot,z_{s}^{*},z_{s+1},\cdot\cdot,z_{r})
\\ &\cdot \Gamma(-z_{1}^{*})\dotsm\Gamma(-z_{s}^{*})\Gamma(-z_{s+1})\dotsm\Gamma(-z_{r})
\end{align*}}
provided $det\;A$ is not zero
]
]
]
]
]
]
]
\end{forest}
%\end{center} % or use `
\end{figure}
Wenn ich nun versuche, "Regel 1" in "Regel O_1" zu ändern, wird die Ausrichtung der Kästchen verzerrt. Ich möchte alle Regelindizes ändern
Antwort1
In Ihrem Code benötigen Sie:
- Geben Sie die Präambel des Dokuments an (die für Ihr Codebeispiel relevant ist)
- Entfernen Sie leere Zeilen aus dem Code
- Verwenden Sie geschweifte Klammern in Gleichungen auf einheitliche Weise. Beispiel:
{\[ e^{A} = ... \]}
und ähnlich in allen Fällen der dargestellten Gleichungen
- "O_1" schreibe als mathematischen Ausdruck:
$O_1$
oder als TextO\_1
(es ist nicht klar, was du hier haben möchtest). Der letztere Fall wird im linken Zweig in MWE unten betrachtet. Bei der Verwendung wird die Richtung des Baums nicht geändert.
Unter Berücksichtigung des oben Gesagten in Ihrem Codefragment erhalte ich:
Das obige Ergebnis wurde wie folgt erzielt:
\documentclass{article}
\usepackage{nccmath, mathtools}
\usepackage[edges]{forest}
\usetikzlibrary{arrows.meta}
\begin{document}
\begin{figure}[ht]
\centering
\setlength\abovedisplayskip{2pt}%
\begin{forest}
for tree = {
draw,
text width=54mm,
font=\scriptsize,
%
grow = south,
forked edge,
s sep = 6mm,
l sep = 4mm,
fork sep = 2mm,
if level<= 2{text centered}{},
tier/.option = level, % for aligning nodes to levels
%
edge = {-{Stealth[length=3pt]}, semithick},
}
[Feynman Integral
[Schwinger Parametrization
%%%% left branch
[Original Method of Brackets
[\textbf{Rule O\_1}: \underline{Expanding Exponential}
{\[e^{-A} = \sum_{n=0}^{\infty}\mfrac{(-1)^n A^n}{\Gamma(1+n)}\]}
[\textbf{Rule 2}:\underline{ Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm+ a_r)^{\alpha}= \\
\sum_{\mathclap{m_1,\dotsc,m_r}} \phi_{m_1,\dotsc,m_r}
a_{1}^{m_1}\dotsm a_{r}^{m_r}\\
\mfrac{\langle -\alpha+m_1+\dotsm+m_r\rangle}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
{\[ \int_{0}^{\infty}x^{l-1}= \langle l\rangle \]}
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
\langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
\cdots \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
\end{multline*}}
is written as
{\begin{align*}
&\mfrac{1}{|detA|}\sum_{n_{s+1}\cdots n_{r}} f(n_{1}^{*},\cdot\cdot,n_{s}^{*},n_{s+1},\cdot\cdot,n_{r}) \\
&\cdot\Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{s}^{*})\Gamma(-n_{s+1})\dotsm\Gamma(-n_{r})
\end{align*}}
provided $\det A$ is not zero
]
]
]
]
]
[Modified Method of Brackets
[\textbf{Rule 1}: \underline{Expanding Exponential}
{\[e^{-A} = \oint \mathrm{\frac{dz}{2\pi i}} (A)^z\Gamma(-z)\]}
[\textbf{Rule 2}: \underline{Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm + a_r)^{\alpha} = \\
\oint\frac{dz_1}{2 \pi i}\dots\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\
\langle -\alpha+z_1+\dotsm + z_r\rangle\frac{\Gamma(-z_1)\dotsm\Gamma(-z_2)}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
{\[\int_{0}^{\infty}x^{l-1}= \langle l\rangle\]}
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\oint\frac{dz_{1}}{2 \pi i}\cdots \oint\frac{dz_{r}}{2 \pi i}f(z_1,\dotsc,z_r)\\
\langle a_{11}z_{1}+\dotsm+a_{1r}z_{r}+c_{1}\rangle\\
\cdots \langle a_{s1}z_{1}+\dotsm+a_{sr}z_{r}+c_{r}\rangle
\end{multline*}}
is written as
{\begin{align*}
& \mfrac{1}{|detA|}\prod_{i=s+1}^r\oint\frac{dz_i}{2 \pi i} f(z_{1}^{*},\cdot\cdot,z_{s}^{*},z_{s+1},\cdot\cdot,z_{r}) \\
&\cdot \Gamma(-z_{1}^{*})\dotsm\Gamma(-z_{s}^{*})
\Gamma(-z_{s+1})\dotsm\Gamma(-z_{r})
\end{align*}}
provided $\det A$ is not zero
]
]
]
]
]
]
]
\end{forest}
\end{figure}
\end{document}