
Tengo la siguiente (bastante horrible) ecuación en mi tesis:
\begin{align*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1) =
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \bigl(
\frac{\partial^2}{\partial t_1^2}\alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) +\\
\alpha'(w-t_0+t_1) \cdot 2 \cdot \log ( \delta+2t_0+2t_1)+
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \frac{2}{\delta+2t_0+2t_1} +\\
2 \frac{\partial}{\partial t_1} \alpha( w-t_0+t_1 ) \bigr) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-2}\cdot\\
\bigl( \frac{\partial}{\partial t_1} \alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) + (\alpha (w-t_0+t_1) -2) \bigr) \cdot \\
\bigl( \alpha'(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) +
2\alpha( w-t_0+t_1)\bigr) = \\
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \Bigl(
\frac{\partial^2}{\partial t_1^2}\alpha(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) +\\
2 \cdot \alpha'(w-t_0+t_1) \cdot \bigl( 2 + \log ( \delta+2t_0+2t_1) \bigr) \Bigr) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1)-2} \cdot \Bigl( \\
\alpha '(w-t_0+t_1) \cdot
(\delta + 2t_0+2t_1) \cdot \log (\delta + 2t_0+2t_1) +
\bigl(\alpha (w-t_0+t_1) -2) \bigr) \cdot
\bigl( \\
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) +2\alpha( w-t_0+t_1)\bigr) \Bigr) < 0
\end{align*}
Usando exactamente este fragmento de código, sin ningún comando de formato especial como & o \[2mm], el texto matemático resultante es bastante ilegible:
¿Cómo formatearías tales ecuaciones en LaTeX y cuál dirías que es una buena práctica al componer ecuaciones tan grandes?
Respuesta1
Intentaría hacer la ecuación más pequeña agrupando partes:
- No lo use
\cdot
donde no sea necesario. Lo uso sólo para productos escalares de vectores y números, pero no para factores simbólicos ni antes de paréntesis. - Los derivados a menudo se escriben como
\partial_{t_1}
en lugar de\frac{\partial}{\partial t_1}
. Esto puede ahorrar algo de espacio. - Introducir sustituciones puede resultar útil. En su código
(\delta+2t_0+2t_1)
aparece con bastante frecuencia y podría reemplazarse por un nuevo símbolo que se definirá antes o después de la ecuación. - Alinee la ecuación al menos en todos los signos iguales:
&=
- Otros saltos de línea pueden estar antes de
+
los signos para "agrupar" sumandos (esto muestra que la ecuación consta de partes similares que se suman)
Respuesta2
roturaantesno después de los operadores y definiendo nombres para los subtérminos
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1)
&=
b^{a-1} \cdot \bigl(
\frac{\partial^2}{\partial t_1^2}a \cdot b \cdot \log ( b) +
a' \cdot 2 \cdot \log ( b)+
a' \cdot b \cdot \frac{2}{b} +
2 \frac{\partial}{\partial t_1} a \bigr) \\
&\quad+
b^{a-2}\cdot
\bigl( \frac{\partial}{\partial t_1}a \cdot b \cdot \log ( b) + (a -2) \bigr) \cdot
\bigl( a' \cdot b \cdot \log ( b) + 2a\bigr)\\
& =
b^{a-1} \cdot \Bigl(
\frac{\partial^2}{\partial t_1^2}a \cdot b \cdot \log ( b) +
2 \cdot a' \cdot \bigl( 2 + \log ( b) \bigr) \Bigr)\\
&\quad +
b^{a-2} \cdot \bigl(a' \cdot
c \cdot \log (c) +
\bigl(a -2) \bigr) \cdot
\bigl(a' \cdot b \cdot \log ( b) +2a)\bigr)\bigr)\\
&< 0
\end{align*}
where:\\
$a=\alpha( w-t_0+t_1 )$\\
$a'=\alpha'(w-t_0+t_1)$\\
$b=\delta+2t_0+2t_1$\\
$c=\delta + 2t_0+2t_1$
\end{document}
Respuesta3
En realidad, me gustaría empezar a responder con una pregunta: ¿Es muy informativo mostrar una ecuación tan larga?
Intentaría identificar las partes de tu ecuación y escribiría algo como
\[a (A + B + C) < 0\]
where
\[a = ... \]
and
\begin{align}
A &= ... \\
B &= ... \\
C &= ...
\end{align}
esto hace que sea mucho más fácil de leer y quizás también puedas dar una explicación a cada término.
Respuesta4
Intente usar el breqn
paquete. Comience con usepackage{breqn}
, luego reemplace el align*
entorno con dmath*
. Luego elimine todos los saltos de línea manuales \\
, porque breqn
los saltos de línea y la alineación se realizan automáticamente. También puedes reemplazar \bigl
and \bigr
con \left
and \right
, porque breqn
permite saltos de línea dentro de un \left
par \right
.
\documentclass{article}
\usepackage{breqn} % from the "mh" bundle
\begin{document}
\begin{dmath*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1) =
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \left(
\frac{\partial^2}{\partial t_1^2}\alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot
\log ( \delta+2t_0+2t_1) +
\alpha'(w-t_0+t_1) \cdot 2 \cdot \log ( \delta+2t_0+2t_1)+
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \frac{2}{\delta+2t_0+2t_1} +
2 \frac{\partial}{\partial t_1} \alpha( w-t_0+t_1 ) \right) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-2}\cdot
\left( \frac{\partial}{\partial t_1} \alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1)
\cdot \log ( \delta+2t_0+2t_1) + (\alpha (w-t_0+t_1) -2) \right) \cdot
\left( \alpha'(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) +
2\alpha( w-t_0+t_1)\right) =
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \left(
\frac{\partial^2}{\partial t_1^2}\alpha(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot
\log ( \delta+2t_0+2t_1) +
2 \cdot \alpha'(w-t_0+t_1) \cdot \left( 2 + \log ( \delta+2t_0+2t_1) \right) \right)
+ ( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1)-2} \cdot \Bigl(
\alpha '(w-t_0+t_1) \cdot
(\delta + 2t_0+2t_1) \cdot \log (\delta + 2t_0+2t_1) +
\left(\alpha (w-t_0+t_1) -2 \right) \cdot
\left(
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) +2\alpha(
w-t_0+t_1)\right) \Bigr) < 0
\end{dmath*}
\end{document}