Una parte de mi libro "Geometrie und Topologie" es una tabla de símbolos que permite a los estudiantes encontrar rápidamente las palabras correctas cuando no entienden un símbolo. Esto facilita mucho la búsqueda a través del índice / Wikipedia / Google / math.SE. Pero actualmente no se ve muy bien.
Las fuentes completas del documento sonaquí.
Ejemplo de trabajo
El siguiente ejemplo se compila casi (excepto las referencias y los números de página) en la tabla de símbolos que tengo actualmente:
\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}
\usepackage{amsmath,amssymb}% math symbols / fonts
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage[bookmarks,bookmarksnumbered,hypertexnames=false,pdfpagelayout=OneColumn,colorlinks,hyperindex=false]{hyperref} % has to be after makeidx
\hypersetup{hidelinks=true}
\usepackage{braket} % needed for \Set
\usepackage{parskip} % nicer paragraphs
\usepackage[german,nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm
\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]%
{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]%
{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{%
\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}
\allowdisplaybreaks
\usepackage{microtype}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\fB{\mathfrak{B}}
\def\calS{\mathcal{S}}
\def\fT{\mathfrak{T}}
\def\fU{\mathfrak{U}}
\def\atlas{\ensuremath{\mathcal{A}}}
\def\praum{\ensuremath{\mathcal{P}}}
\DeclareMathOperator{\rang}{Rg}
\newcommand\dcup{\mathbin{\dot{\cup}}}
\def\GL{\ensuremath{\mathrm{GL}}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\def\SL{\ensuremath{\mathrm{SL}}}
\def\PSL{\ensuremath{\mathrm{PSL}}}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}
\def\mda{\ensuremath{\mathbb{A}}}
\def\mdp{\ensuremath{\mathbb{P}}}
\def\mdc{\ensuremath{\mathbb{C}}}
\def\mdk{\ensuremath{\mathbb{K}}}
\def\mdr{\ensuremath{\mathbb{R}}}
\def\mdq{\ensuremath{\mathbb{Q}}}
\def\mdz{\ensuremath{\mathbb{Z}}}
\def\mdn{\ensuremath{\mathbb{N}}}
\def\mdh{\ensuremath{\mathbb{H}}}
\begin{document}
\appendix
\markboth{Symbolverzeichnis}{Symbolverzeichnis}
\twocolumn
\chapter*{Symbolverzeichnis}
\addcontentsline{toc}{chapter}{Symbolverzeichnis}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mengenoperationen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Mengenoperationen}
$A^C\;\;\;$ Komplement der Menge $A$\\
$\mathcal{P}(M)\;\;\;$ Potenzmenge von $M$\\
$\overline{M}\;\;\;$ Abschluss der Menge $M$\\
$\partial M\;\;\;$ Rand der Menge $M$\\
$M^\circ\;\;\;$ Inneres der Menge $M$\\
$A \times B\;\;\;$ Kreuzprodukt zweier Mengen\\
$A \subseteq B\;\;\;$ Teilmengenbeziehung\\
$A \subsetneq B\;\;\;$ echte Teilmengenbeziehung\\
$A \setminus B\;\;\;$ $A$ ohne $B$\\
$A \cup B\;\;\;$ Vereinigung\\
$A \dcup B\;\;\;$ Disjunkte Vereinigung\\
$A \cap B\;\;\;$ Schnitt\\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Geometrie %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Geometrie}
$AB\;\;\;$ Gerade durch die Punkte $A$ und $B$\\
$\overline{AB}\;\;\;$ Strecke mit Endpunkten $A$ und $B$\\
$\triangle ABC\;\;\;$ Dreieck mit Eckpunkten $A, B, C$\\
$\overline{AB} \cong \overline{CD}\;\;\;$ Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
$|K|\;\;\;$ Geometrische Realisierung des Simplizialkomplexes $K$\\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gruppen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Gruppen}
$\Homoo(X)\;\;\;$ Homöomorphismengruppe\\
$\Iso(X)\;\;\;$ Isometriengruppe\\
$\GL_n(K)\;\;\;$ Allgemeine lineare Gruppe\footnote{von \textit{\textbf{G}eneral \textbf{L}inear Group}}\\
$\SL_n(K)\;\;\;$ Spezielle lineare Gruppe\\
$\PSL_n(K)\;\;\;$ Projektive lineare Gruppe\\
$\Perm(X)\;\;\;$ Permutationsgruppe\\
$\Sym(X)\;\;\;$ Symmetrische Gruppe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wege %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Wege}
$\gamma: I \rightarrow X\;\;\;$ Ein Weg\\
$[\gamma]\;\;\;$ Homotopieklasse von $\gamma$\\
$\gamma_1 * \gamma_2\;\;\;$ Zusammenhängen von Wegen\\
$\gamma_1 \sim \gamma_2\;\;\;$ Homotopie von Wegen\\
$\overline{\gamma}(x) = \gamma(1-x)\;\;\;$ Inverser Weg\\
$C := \gamma([0,1])\;\;\;$ Bild eines Weges $\gamma$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Weiteres %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Weiteres}
$\fB\;\;\;$ Basis einer Topologie\\
$\calS\;\;\;$ Subbasis einer Topologie\\
$\fB_\delta(x)\;\;\;$ $\delta$-Kugel um $x$\\
$\fT\;\;\;$ Topologie\\
$\atlas\;\;\;$ Atlas\\
$\praum\;\;\;$ Projektiver Raum\\
$\langle \cdot , \cdot \rangle\;\;\;$ Skalarprodukt\\
$X /_\sim\;\;\;$ $X$ modulo $\sim$\\
$[x]_\sim\;\;\;$ Äquivalenzklassen von $x$ bzgl. $\sim$\\
$\| x \|\;\;\;$ Norm von $x$\\
$| x |\;\;\;$ Betrag von $x$\\
$\langle a \rangle\;\;\;$ Erzeugnis von $a$\\
$S^n\;\;\;$ Sphäre\\
$T^n\;\;\;$ Torus\\
$f \circ g\;\;\;$ Verkettung von $f$ und $g$\\
$\pi_X\;\;\;$ Projektion auf $X$\\
$f|_U\;\;\;$ $f$ eingeschränkt auf $U$\\
$f^{-1}(M)\;\;\;$ Urbild von $M$\\
$\rang(M)\;\;\;$ Rang von $M$\\
$\chi(K)\;\;\;$ Euler-Charakteristik von $K$\\
$\Delta^k\;\;\;$ Standard-Simplex\\
$X \# Y\;\;\;$ Verklebung von $X$ und $Y$\\
$d_n\;\;\;$ Lineare Abbildung aus \cref{kor:9.11}\\
$A \cong B\;\;\;$ $A$ ist isometrisch zu $B$\\
$f_*\;\;\;$ Abbildung zwischen Fundamentalgruppen (vgl. \cpageref{korr:11.5})
\onecolumn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Zahlenmengen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Zahlenmengen}
$\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
$\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
$\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
$\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
$\mdr_+\;$ Echt positive reele Zahlen\\
$\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
$\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
$\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
$\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
$\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
$I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
$f:S^1 \hookrightarrow \mdr^2\;\;\;$ Einbettung der Kreislinie in die Ebene\\
$\pi_1(X,x)\;\;\;$ Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
$\Fix(f)\;\;\;$ Menge der Fixpunkte der Abbildung $f$\\
$\|\cdot\|_2\;\;\;$ 2-Norm; Euklidische Norm\\
$\kappa\;\;\;$ Krümmung\\
$\kappa_{\ts{Nor}}\;\;\;$ Normalenkrümmung\\
$V(f)\;\;\;$ Nullstellenmenge von $f$\footnote{von \textit{\textbf{V}anishing Set}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Krümmung %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Krümmung}
$D_p F: \mdr^2 \rightarrow \mdr^3\;\;\;$ Lineare Abbildung mit Jacobi-Matrix in $p$ (siehe \cpageref{def:Tangentialebene})\\
$T_s S\;\;\;$ Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
$d_s n(x)\;\;\;$ Weingarten-Abbildung\\
\end{document}
Renderizado
Pregunta
Me gustaría saber cómo hacer que esta tabla de símbolos sea "más bonita".
Una forma de imaginar cómo mejorarlo sería alinear el contenido de la primera página debajo de la sección "Gruppen". Pero no quiero restringir las respuestas a esto.
lo que he probado
tabular
Intenté usar el tabular
entorno:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mengenoperationen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Mengenoperationen}
\begin{tabular}{ll}
$A^C$ & Komplement der Menge $A$\\
$\mathcal{P}(M)$& Potenzmenge von $M$\\
$\overline{M}$ & Abschluss der Menge $M$\\
$\partial M$ & Rand der Menge $M$\\
$M^\circ$ & Inneres der Menge $M$\\
$A \times B$ & Kreuzprodukt zweier Mengen\\
$A \subseteq B$ & Teilmengenbeziehung\\
$A \subsetneq B$& echte Teilmengenbeziehung\\
$A \setminus B$ & $A$ ohne $B$\\
$A \cup B$ & Vereinigung\\
$A \dcup B$ & Disjunkte Vereinigung\\
$A \cap B$ & Schnitt
\end{tabular}
pero luego me sale esto:
detallar
\section*{Mengenoperationen}\leavevmode
\begin{itemize}
\itemsep0em
\item[$A^C$] Komplement der Menge $A$\\
\item[$\mathcal{P}(M)$] Potenzmenge von $M$\\
\item[$\overline{M}$] Abschluss der Menge $M$\\
\item[$\partial M$] Rand der Menge $M$\\
\item[$M^\circ$] Inneres der Menge $M$\\
\item[$A \times B$] Kreuzprodukt zweier Mengen\\
\item[$A \subseteq B$] Teilmengenbeziehung\\
\item[$A \subsetneq B$] echte Teilmengenbeziehung\\
\item[$A \setminus B$] $A$ ohne $B$\\
\item[$A \cup B$] Vereinigung\\
\item[$A \dcup B$] Disjunkte Vereinigung\\
\item[$A \cap B$] Schnitt
\end{itemize}
da como resultado un espaciado demasiado alto:
Respuesta1
Podrías usar el xtab
paquete y su entorno xtabular
. Funciona de manera muy similar al longtable
entorno, en el sentido de que puede dividirse en columnas y páginas; sin embargo, también es compatible con el modo de dos columnas, aunque longtable
no lo es.
Le sugiero que ajuste el ancho de la primera columna de la tabla (la columna de símbolos) para que sea lo suficientemente ancha como para contener la entrada simbólica más amplia dentro de cada sección. Luego, ajuste la segunda columna para que toda la tabla tenga un ancho de \columnwidth
. Dada la medida estrecha de la segunda columna dentro de una tabla, no es aconsejable una justificación "completa". En su lugar, utilice \RaggedRight
(proporcionado por el paquete ragged2e
), que permite la separación de palabras. (Por el contrario, \raggedright
no permite la separación de palabras).
El ejemplo muestra solo la primera página de su ejemplo más grande.
\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}
\usepackage{array,xtab,ragged2e}
\newlength\mylengtha
\newlength\mylengthb
\newcolumntype{P}[1]{>{\RaggedRight}p{#1}}
\tabcolsep=3pt % default: 6pt
\usepackage{amsmath,amssymb}% math symbols / fonts
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct
% output of umlauts in pdf
\usepackage{braket} % needed for \Set
\usepackage{parskip} % nicer paragraphs
\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]%
{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]%
{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{%
\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}
\allowdisplaybreaks
\usepackage{microtype}
\usepackage{hyperref} % has to be after makeidx
\hypersetup{bookmarks,bookmarksnumbered,hypertexnames=false,
pdfpagelayout=OneColumn,colorlinks,hyperindex=false,
hidelinks=true}
\usepackage[german,nameinlink,noabbrev]{cleveref}
% has to be after hyperref, ntheorem, amsthm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\fB{\mathfrak{B}}
\def\calS{\mathcal{S}}
\def\fT{\mathfrak{T}}
\def\fU{\mathfrak{U}}
\def\atlas{\ensuremath{\mathcal{A}}}
\def\praum{\ensuremath{\mathcal{P}}}
\DeclareMathOperator{\rang}{Rg}
\newcommand\dcup{\mathbin{\dot{\cup}}}
\def\GL{\ensuremath{\mathrm{GL}}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\def\SL{\ensuremath{\mathrm{SL}}}
\def\PSL{\ensuremath{\mathrm{PSL}}}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}
\def\mda{\ensuremath{\mathbb{A}}}
\def\mdp{\ensuremath{\mathbb{P}}}
\def\mdc{\ensuremath{\mathbb{C}}}
\def\mdk{\ensuremath{\mathbb{K}}}
\def\mdr{\ensuremath{\mathbb{R}}}
\def\mdq{\ensuremath{\mathbb{Q}}}
\def\mdz{\ensuremath{\mathbb{Z}}}
\def\mdn{\ensuremath{\mathbb{N}}}
\def\mdh{\ensuremath{\mathbb{H}}}
\begin{document}
\appendix
\markboth{Symbolverzeichnis}{Symbolverzeichnis}
\twocolumn
\chapter*{Symbolverzeichnis}
\addcontentsline{toc}{chapter}{Symbolverzeichnis}
%%%%% Mengenoperationen
\section*{Mengenoperationen}
% Set \mylengtha to widest element in first column; adjust
% \mylengthb so that the width of the table is \columnwidth
\settowidth\mylengtha{$A \subseteq B$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$A^C $ & Komplement der Menge $A$\\
$\mathcal{P}(M)$ & Potenzmenge von $M$\\
$\overline{M}$ & Abschluss der Menge $M$\\
$\partial M$ & Rand der Menge $M$\\
$M^\circ$ & Inneres der Menge $M$\\
$A \times B$ & Kreuzprodukt zweier Mengen\\
$A \subseteq B$ & Teilmengenbeziehung\\
$A \subsetneq B$ & echte Teilmengenbeziehung\\
$A \setminus B$ & $A$ ohne $B$\\
$A \cup B$ & Vereinigung\\
$A \dcup B$ & Disjunkte Vereinigung\\
$A \cap B$ & Schnitt
\end{xtabular}
%%%%% Geometrie
\section*{Geometrie}
\settowidth\mylengtha{$\overline{AB} \cong \overline{CD}$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$AB$ & Gerade durch die Punkte $A$ und $B$\\
$\overline{AB}$ & Strecke mit Endpunkten $A$ und $B$\\
$\triangle ABC$ & Dreieck mit Eckpunkten $A, B, C$\\
$\overline{AB} \cong \overline{CD}$ & Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
$|K|$ & Geometrische Realisierung des Simplizialkomplexes~$K$
\end{xtabular}
%%%%% Gruppen
\section*{Gruppen}
\settowidth\mylengtha{$\Homoo(X)$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$\Homoo(X)$ & Homöomorphis\-men\-gruppe\\
$\Iso(X)$ & Isometriengruppe\\
$\GL_n(K)$ & Allgemeine lineare Gruppe (von \textit{\textbf{G}eneral \textbf{L}inear Group})\\
$\SL_n(K)$ & Spezielle lineare Gruppe\\
$\PSL_n(K)$ & Projektive lineare Gruppe\\
$\Perm(X)$ & Permutationsgruppe\\
$\Sym(X)$ & Symmetrische Gruppe
\end{xtabular}
\end{document}
Respuesta2
Tarde para la fiesta, pero aquí hay una modificación deotra respuesta mia.
\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}
\usepackage{amsmath,amssymb}% math symbols / fonts
%\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{braket} % needed for \Set
\usepackage{parskip} % nicer paragraphs
\usepackage{fancyhdr}
\usepackage{microtype}
\usepackage{multicol}
\usepackage[
bookmarks,
bookmarksnumbered,
hypertexnames=false,
pdfpagelayout=OneColumn,
colorlinks,
hyperindex=false,
hidelinks=true,
]{hyperref} % has to be last (almost)
\usepackage[german,nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}%
\renewcommand{\headrulewidth}{0pt}%
}
\allowdisplaybreaks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand\fB{\mathfrak{B}}
\newcommand\calS{\mathcal{S}}
\newcommand\fT{\mathfrak{T}}
\newcommand\fU{\mathfrak{U}}
\newcommand\atlas{\mathcal{A}}
\newcommand\praum{\mathcal{P}}
\DeclareMathOperator{\rang}{Rg}
\newcommand\dcup{\mathbin{\dot{\cup}}}
\DeclareMathOperator\GL{\mathrm{GL}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\DeclareMathOperator\SL{SL}
\DeclareMathOperator\PSL{PSL}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}
\newcommand\mda{\mathbb{A}}
\newcommand\mdp{\mathbb{P}}
\newcommand\mdc{\mathbb{C}}
\newcommand\mdk{\mathbb{K}}
\newcommand\mdr{\mathbb{R}}
\newcommand\mdq{\mathbb{Q}}
\newcommand\mdz{\mathbb{Z}}
\newcommand\mdn{\mathbb{N}}
\newcommand\mdh{\mathbb{H}}
\makeatletter
\newlength{\symbolswd}
\newenvironment{symbols}
{%
\begin{multicols*}{2}[\chapter*{Symbolverzeichnis}]
\small
\setlength{\parindent}{0pt}%
\setlength{\parskip}{0pt}%
\edef\current@symbolswd{\the\symbolswd}%
\interlinepenalty=10000 % no page break in a two line entry
}
{%
\ifdim\current@symbolswd=\symbolswd
\else
\@latex@warning@no@line{Rerun to get list of symbols right}%
\fi
\immediate\write\@auxout{\global\symbolswd=\the\symbolswd}%
\end{multicols*}
}
\newcommand{\entry}[2]{%
\par
\sbox\z@{$#1$\qquad}%
\ifdim\wd\z@>\symbolswd \setlength{\symbolswd}{\wd\z@}\fi
\raggedright
\hangindent=\symbolswd
\makebox[\symbolswd][s]{$#1$\leaders\hbox to 4pt{\hss.\hss}\hfill}%
\hspace{0pt}#2\par
}
\makeatother
\begin{document}
\begin{symbols}
\section*{Mengenoperationen}
\entry{A^C}{Komplement der Menge~$A$}
\entry{\mathcal{P}(M)}{Potenzmenge von~$M$}
\entry{\overline{M}}{Abschluss der Menge~$M$}
\entry{\partial M}{Rand der Menge~$M$}
\entry{M^\circ}{Inneres der Menge~$M$}
\entry{A \times B}{Kreuzprodukt zweier Mengen}
\entry{A \subseteq B}{Teilmengenbeziehung}
\entry{A \subsetneq B}{echte Teilmengenbeziehung}
\entry{A \setminus B}{$A$ ohne~$B$}
\entry{A \cup B}{Vereinigung}
\entry{A \dcup B}{Disjunkte Vereinigung}
\entry{A \cap B}{Schnitt}
\section*{Geometrie}
\entry{AB}{Gerade durch die Punkte $A$ und~$B$}
\entry{\overline{AB}}{Strecke mit Endpunkten $A$ und~$B$}
\entry{\triangle ABC}{Dreieck mit Eckpunkten $A, B, C$}
\entry{\overline{AB} \cong \overline{CD}}{Die Strecken $\overline{AB}$
und $\overline{CD}$ sind isometrisch}
\entry{|K|}{Geometrische Realisierung des Simplizialkomplexes~$K$}
\section*{Gruppen}
\entry{\Homoo(X)}{Homöomorphis\-men\-gruppe}
\entry{\Iso(X)}{Isometriengruppe}
\entry{\GL_n(K)}{Allgemeine lineare Gruppe
(von \textit{\textbf{G}eneral \textbf{L}inear Group})}
\entry{\SL_n(K)}{Spezielle lineare Gruppe}
\entry{\PSL_n(K)}{Projektive lineare Gruppe}
\entry{\Perm(X)}{Permutationsgruppe}
\entry{\Sym(X)}{Symmetrische Gruppe}
\end{symbols}
\end{document}
La ventaja es que este código no utiliza tabular
(ni ninguna variación del mismo).
Diferencias notables: \parskip
se fija en cero; multicols
se utiliza para obtener dos columnas, por lo que los saltos de página son automáticos; \small
y \raggedright
son necesarios debido a las columnas estrechas.