\documentclass[11pt,paper=a4,answers]{exam}
\usepackage{graphicx,lastpage}
\usepackage{upgreek}
\usepackage{censor}
\censorruledepth=-.2ex
\censorruleheight=.1ex
\hyphenpenalty 10000
\usepackage[paperheight=10.5in,paperwidth=8.27in,bindingoffset=0in,left=0.8in,right=1in,
top=0.7in,bottom=1in,headsep=.5\baselineskip]{geometry}
\flushbottom
\usepackage[normalem]{ulem}
\renewcommand\ULthickness{2pt} %%---> For changing thickness of underline
\setlength\ULdepth{1.5ex}%\maxdimen ---> For changing depth of underline
\renewcommand{\baselinestretch}{1}
\pagestyle{empty}
\pagestyle{headandfoot}
\headrule
\newcommand{\continuedmessage}{%
\ifcontinuation{\footnotesize Question \ContinuedQuestion\ continues\ldots}{}%
}
\runningheader{\footnotesize Mathematics}
{\footnotesize Mathematics --- Differential Geometry}
{\footnotesize Page \thepage\ of \numpages}
\footrule
\footer{\footnotesize Student's name:}
{}
{\ifincomplete{\footnotesize Question \IncompleteQuestion\ continues
on the next page\ldots}{\iflastpage{\footnotesize End of exam}{\footnotesize Please go on to the next page\ldots}}}
\usepackage{cleveref}
\crefname{figure}{figure}{figures}
\crefname{question}{question}{questions}
%==============================================================
\begin{document}
%% \thispagestyle{empty}
\noindent
\begin{minipage}[l]{.1\textwidth}%
\noindent
\includegraphics[width=1.5\textwidth]{vit1}
\end{minipage}
\hfill
\begin{minipage}[r]{.68\textwidth}%
\begin{center}
{\large \bfseries School of Advanced Sciences \par
\Large VIT UNIVERSITY CHENNAI CAMPUS \\[2pt]
\small Modern Physics {(\small Code: PHY101)} \par}
% \vspace{0.5cm}
\end{center}
\end{minipage}
\fbox{\begin{minipage}[l]{.160\textwidth}%
\noindent
{Slot: C1}\\
{\footnotesize {7 Oct 2014}}
\end{minipage}}
\par
\noindent
Dr. Arun Kumar Sarma \hfill \hfill Dr. Sanjit Das \\
\noindent
\uline{Time: 1.5 hour \hfill \normalsize\emph{\bf{CAT II}} \hfill Maximum Marks: 50}
\begin{questions}
\pointsinrightmargin
\pointsdroppedatright
\marksnotpoints
%\marginpointname{mark}
\pointpoints{mark}{marks}
\pointformat{\boldmath\themarginpoints}
\bracketedpoints
\question[06]
\label{Q:EinAB}
Find relation between spontaneous emmission and absorption
\begin{enumerate}
\item[(a)]
\end{enumerate}
\droppoints
\question[10]
\label{Q:zbus}
Prove that necessary conditions for the curve $u = u(t), v = v(t)$ on a surface $\vec(r) = \vec(r)(u,v)$ to be geodesic is that \begin{equation}U \frac{\partial T}{\partial \dot{v}} - V \frac{\partial T}{\partial \dot{u}}\end{equation}
where
$$ U = \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{u}}\Big) - \frac{\partial T}{\partial u} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T}{\partial \dot{u}}$$
$$ V = \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{v}}\Big) - \frac{\partial T}{\partial v} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T}{\partial \dot{v}}$$
\droppoints
\question[8]
\label{Q:zbus}
For
$$
x = a(3u - u^{3}),\qquad y = 3au^{2},\qquad z = a(3u + u^{3})
$$
show that $$\uptau = k = \frac{1}{3a(1+u^{2})^{2}}$$
\droppoints
\question[8]
\label{Q:zbus}
A curve is uniquely determined except as the position in space, when its curvature and torsion are given functions of its arc length.
\droppoints
\question[8]
\label{Q:zbus}
Show that there exists an infinite family of involutes for a gives curve.
\droppoints
\newpage
\question[08]
\label{Q:ybus}
Give short answers of the following questions.
\begin{enumerate}
\item Define Helicoids?
\item Define spherical indicatrix?
\item Define the intrinsic equation?
\item Write the statement of existence theorem for space curve?
\item The normal curvature $k_{n}$ is equal to the what?
\item Prove that $L = -n_{1} \cdot r_{1}$ and $N = -n_{2} \cdot r_{2}$?
\item Define the geodesic?
\item Write down the equation of tangent plane?
\item If equation of the circle is $x^{2} + y^{2} = a^{2}$ then the parametric equations of circles are \xblackout{forty two}?
\end{enumerate}
\end{questions}
\begin{center}
\rule{.5\textwidth}{1pt}
\end{center}
\end{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
En este formato de cuestionario, intenté improvisar la subdivisión de números desde el principio. Lo que quiero decir con esto es comenzar como 1) (a)... en la siguiente línea (b)... algo así.
Respuesta1
Creo que estás describiendo el part
sistema. Referirse aexam
documentación para una explicación completa, pero aquí está el ejemplo:
\documentclass{exam}
\begin{document}
\begin{questions}
\question
Why is there air?
\question
What if there were no air?
\begin{parts}
\part
Describe the effect on the balloon industry.
\part
Describe the effect on the aircraft industry.
\end{parts}
\question
\begin{parts}
\part
Define the universe. Give three examples.
\part
If the universe were to end, how would you know?
\end{parts}
\end{questions}
\end{document}