Mi pregunta es sencilla. He jugado con el &
símbolo para alinear mis ecuaciones claramente una debajo de la otra, pero no logro que se vea bien. Esto es lo más cerca que tengo:
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\begin{document}
\begin{align}
A_{0} & = -\frac{3\sigma_{1}' h H L^{2}}{E (H+h)^{3}} &=& -1.62\times 10^{-6}\,\mathrm{m} \\
B_{0} & = - \frac{3 h H (\alpha_{2}-\alpha_{1}) L^{2}}{(H+h)^{3}} &=& 2.95\times 10^{-8}\,\mathrm{m\,K^{-1}} \\
C_{0} & = \frac{4 L^{3}}{E W (H+h)^{3}} &=& 1.08\,\mathrm{m\,N^{-1}}
\end{align}
\end{document}
que produce el siguiente resultado:
Cómo puedoeliminar el espacio horizontalen el medio y aún así alinear los signos iguales uno debajo del otro? Debería ser la ecuación del medio la que dicte los espacios, es decir, las otras dos ecuaciones deben alinearse con esa.
Como pregunta final, podría formular: ¿Cómotú¿Hacerlo para que se vea "bien"?
Y sí, he mirado otras preguntas similares sin suerte.
Respuesta1
Dos soluciones con alignat
; uno de ellos tiene dos puntos de alineación, el otro, tres, de modo que los valores numéricos quedan alineados en la parte entera de la mantisa:
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\begin{document}
\begin{alignat}{3}
A_{0} & = -\frac{3σ_{1}' h H L²}{E (H+h)³} &&= - & & 1.62 × 10⁻⁶\,\mathrm{m} \\
B_{0} & = - \frac{3 h H (α_{2}-α_{1}) L²}{(H+h)³} &&= & & 2.95 × 10⁻⁸\,\mathrm{m\,K⁻¹} \\
C_{0} & = \frac{4 L³}{E W (H+h)³} &&= & & 1.08\,\mathrm{m\,N⁻¹}
\end{alignat}
\begin{alignat}{2}
A_{0} & = -\frac{3σ_{1}' h H L²}{E (H+h)³} &&= - 1.62 × 10⁻⁶\,\mathrm{m} \\
B_{0} & = - \frac{3 h H (α_{2}-α_{1}) L²}{(H+h)³} &&= 2.95 × 10⁻⁸\,\mathrm{m\,K⁻¹} \\
C_{0} & = \frac{4 L³}{E W (H+h)³} &&= 1.08\,\mathrm{m\,N⁻¹}
\end{alignat}
\end{document}
Respuesta2
Lo que necesitas es alignat
:
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\begin{document}
\begin{alignat}{2}
A_{0} & = -\frac{3\sigma_{1}' h H L^{2}}{E (H+h)^{3}} &{}={}& -1.62\times 10^{-6}\,\mathrm{m} \\
B_{0} & = - \frac{3 h H (\alpha_{2}-\alpha_{1}) L^{2}}{(H+h)^{3}} &{}={}& 2.95\times 10^{-8}\,\mathrm{m\,K^{-1}} \\
C_{0} & = \frac{4 L^{3}}{E W (H+h)^{3}} &{}={}& 1.08\,\mathrm{m\,N^{-1}}
\end{alignat}
\end{document}
\begin{alignat}{2}
se alinea en dos puntos (dos columnas de ecuación) y hay que usar tres &
s. Para obtener el espacio adecuado =
en la segunda columna, utilice{}={}
Respuesta3
Tienes que utilizar el alignat
medio ambiente. Además, utilicesiunitx
para las cantidades físicas.
\documentclass{article}
\usepackage{amsmath}
\usepackage{siunitx}
\begin{document}
\begin{alignat}{2}
A_{0}
&= -\frac{3\sigma_{1}'hHL^{2}}{E(H+h)^{3}}
&&= \SI{-1.62e-6}{\m} \\
B_{0}
&= - \frac{3hH(\alpha_{2}-\alpha_{1})L^{2}}{(H+h)^{3}}
&&= \SI{2.95e-8}{\m\per\K} \\
C_{0}
&= \frac{4L^{3}}{EW(H+h)^{3}}
&&= \SI{1.08}{\m\per\N}
\end{alignat}
\end{document}
Actualizar
Inspirado porLa respuesta de Barnard, aquí tienes una manera en caso de que también quieras alinear las unidades:
\documentclass{article}
\usepackage{amsmath}
\usepackage{siunitx}
\begin{document}
\begin{alignat}{4}
A_{0}
&= -\frac{3\sigma_{1}'hHL^{2}}{E(H+h)^{3}}
&&={}& -1.62 &\times 10^{-6} && \,\si{\m} \\
B_{0}
&= - \frac{3hH(\alpha_{2}-\alpha_{1})L^{2}}{(H+h)^{3}}
&&={}& 2.95 &\times 10^{-8} && \,\si{\m\per\K} \\
C_{0}
&= \frac{4L^{3}}{EW(H+h)^{3}}
&&={}& 1.08 & && \,\si{\m\per\N}
\end{alignat}
\end{document}
Respuesta4
En caso de que quieras que las fórmulas se ciñan al segundo signo de igualdad, puedes probar esto.
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{siunitx}
\begin{document}
\begin{alignat}{3}
A_{0} =&& -\frac{3σ_{1}' h H L²}{E (H+h)³} &= - && 1.62 × 10⁻⁶\,\mathrm{m} \\
B_{0} =&& - \frac{3 h H (α_{2}-α_{1}) L²}{(H+h)³} &= && 2.95 × 10⁻⁸\,\mathrm{m\,K⁻¹} \\
C_{0} =&& \frac{4 L³}{E W (H+h)³} &= && 1.08\,\mathrm{m\,N⁻¹}
\end{alignat}
\end{document}
y el resultado se muestra a continuación.