![Identificar puntos de eje en TikZ](https://rvso.com/image/305873/Identificar%20puntos%20de%20eje%20en%20TikZ.png)
He escrito el siguiente código que básicamente traza una distribución binomial en función de su parámetro.
\begin{tikzpicture}[scale=1.5]
\begin{axis}[
domain=0:1,
axis lines=left,
grid=both,
xlabel=$\theta$,
ylabel=$L(\theta)$
]
\addplot[smooth,thick,black]
{factorial(50)/(factorial(10)*factorial(40)) *x^10 *(1-x)^40};
\addplot[smooth,dashed,red]
{0.0699};
\end{axis}
\end{tikzpicture}
lo que produce la siguiente figura.
Como puede ver, el pico está en 0,2 y el valor de la función en este punto es un poco superior a 0,13. La línea discontinua roja en 0,0699 representa simplemente la mitad de esa altura.
Mi pregunta ahora es si podría identificar esos dos puntos en el eje x, que he etiquetado como theta, donde esta línea discontinua cruza la función. Es un cálculo bastante difícil si se realiza manualmente y esperaba poder verlo gráficamente.
Respuesta1
¿Algo como esto?
El código:
\documentclass{article}
\usepackage{pgfplots}
\usetikzlibrary{intersections}
\begin{document}
\begin{tikzpicture}[scale=1.5]
\begin{axis}[
domain=0:1,
axis lines=left,
grid=both,
clip=false,
xlabel=$\theta$,
ylabel=$L(\theta)$
]
\addplot[name path=curve,smooth,thick,black]
{factorial(50)/(factorial(10)*factorial(40)) *x^10 *(1-x)^40};
\addplot[name path=line,smooth,dashed,red]
{0.0699};
\path[name intersections={of=curve and line, by={a,b}}];
\draw[dashed]
(a) -- (a|-{axis cs:0,0}) node[anchor=north,font=\tiny] {$\theta_1$};
\draw[dashed]
(b) -- (b|-{axis cs:0,0}) node[anchor=north,font=\tiny] {$\theta_2$};
\node[fill,inner sep=1.5pt] at (a) {};
\node[fill,inner sep=1.5pt] at (b) {};
\end{axis}
\end{tikzpicture}
\end{document}
La idea es utilizar la intersections
biblioteca y name path
(bueno...) nombrar las rutas; luego puedes dejar que TikZ calcule los puntos de intersección; Al usarlo, name intersections
puede asignarles nombres para acciones posteriores.
Para obtener las coordenadas de los puntos de intersección, puede aplicarJake's answer
aCoordenadas de intersecciones:
\documentclass{article}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}
\usetikzlibrary{intersections}
\begin{document}
\makeatletter
\newcommand\transformxdimension[1]{
\pgfmathparse{((#1/\pgfplots@x@veclength)+\pgfplots@data@scale@trafo@SHIFT@x)/10^\pgfplots@data@scale@trafo@EXPONENT@x}
}
\newcommand\transformydimension[1]{
\pgfmathparse{((#1/\pgfplots@y@veclength)+\pgfplots@data@scale@trafo@SHIFT@y)/10^\pgfplots@data@scale@trafo@EXPONENT@y}
}
\makeatother
\begin{tikzpicture}[scale=1.5]
\begin{axis}[
yticklabel style={/pgf/number format/.cd, fixed, fixed zerofill},
domain=0:1,
axis lines=left,
grid=both,
clip=false,
xlabel=$\theta$,
ylabel=$L(\theta)$
]
\addplot[name path global=curve,smooth,thick,black]
{factorial(50)/(factorial(10)*factorial(40)) *x^10 *(1-x)^40};
\addplot[name path global=line,smooth,dashed,red]
{0.0699};
\path[name intersections={of=curve and line, by={a,b}}];
\node[anchor=south] at (a)
{
\pgfgetlastxy{\macrox}{\macroy}
\transformxdimension{\macrox}
\pgfmathprintnumber{\pgfmathresult},%
\transformydimension{\macroy}%
\pgfmathprintnumber{\pgfmathresult}
};
\node[anchor=north west] at (b)
{
\pgfgetlastxy{\macrox}{\macroy}
\transformxdimension{\macrox}
\pgfmathprintnumber{\pgfmathresult},%
\transformydimension{\macroy}%
\pgfmathprintnumber{\pgfmathresult}
};
\draw[dashed]
(a) -- (a|-{axis cs:0,0}) node[anchor=north,font=\tiny] {$\theta_1$};
\draw[dashed]
(b) -- (b|-{axis cs:0,0}) node[anchor=north,font=\tiny] {$\theta_2$};
\node[fill,inner sep=1.5pt] at (a) {};
\node[fill,inner sep=1.5pt] at (b) {};
\end{axis}
\end{tikzpicture}
\end{document}