tcolorbox deja un número descolorido en las diapositivas del proyector

tcolorbox deja un número descolorido en las diapositivas del proyector

Es mi primera semana en beamery tcolorbox. Recientemente preparé una presentación de diapositivas con la beamerclase y tcolorbox. El programa funciona bien, pero tengo un pequeño problema: tcolorboxdeja una numeración difuminada en la parte posterior de cada diapositiva. ¿Crees que podría evitar esto? Aquí hay un ejemplo de trabajo mínimo:

\documentclass[slides]{beamer}
%\documentclass[a4wide,8pt]{extarticle}
\mode<presentation>{}

%Define usepackages
\usetheme{default}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{graphicx}                                   % for pdf, bitmapped graphics files
\usepackage{times}                                       % assumes new font selection scheme installed
\usepackage{amsmath}                                    %assumes amsmath package installed
\usepackage{amssymb} 
\usepackage{amsfonts}                                    % assumes amsmath package installed
\usepackage{color}

\usepackage{commath}

\usepackage{breqn}

\usepackage{tcolorbox}

\usepackage{hyperref}
\usepackage{xcolor}\hypersetup{linkbordercolor=green}



%Define colors
\definecolor{blue}{rgb}{0,0,1}  



% %preamble and title page
    \setbeamersize{text margin left = 0.2mm}
    \setbeamersize{text margin right = 0.2mm}
    \setbeamersize{sidebar width left= 0.3mm}
    \setbeamersize{sidebar width right= 0.3mm}

    \setbeamertemplate{itemize item}[triangle]
    \setbeamertemplate{itemize subitem}[triangle]


%\setbeamercovered{transparent}
%\setbeamertemplate{navigation symbols}{}
%\setbeamertemplate{headline}


\tcbuselibrary{skins,breakable}

% Color Box layers
\tcbset{colframe=blue!75!black,fonttitle=\bfseries,
    colback=green!5!white,
    every box/.style={enhanced,watermark text=\thetcblayer,
        before=\par\smallskip,after=\par\smallskip},
    every box on layer 2/.style={reset,every box,colback=yellow!10!white,
        drop fuzzy shadow}}

% Newt Color Box
\newtcolorbox{pabox}[1]{colback=red!5!white,
    colframe=green!75!black,fonttitle=\bfseries,
    title=#1}

%My green box
\newtcolorbox{mygreenbox}[2][]{%
    enhanced,width=\linewidth-6pt,
    enlarge top by=3pt,enlarge bottom by=3pt,
    enlarge left by=3pt,enlarge right by=3pt,
    title={#2},frame hidden,boxrule=0pt,top=1mm,bottom=1mm,
    colframe=green!30!black, colbacktitle=green!50!yellow,
    coltitle=black, colback=green!25!white,
    borderline={0.5pt}{-0.5pt}{green!75!blue},
    borderline={1pt}{-3pt}{green!50!blue},#1}


\begin{document}

\long\def\/*#1*/{}                              % Define block comment
    % This starts Page 3
    \begin{frame}{\color{cyan}\small Non-Lipschitzian Dynamics of a Continuous FTS Feedback Controller}

        \begin{tcolorbox}[title = \small Overview of Problem]
            \begin{itemize}
            \item\tiny\color{blue}  The design of FTS continuous time-invariant feedback controllers involve non-Lipschitzian closed-loop dynamics
            \item Such controllers will exhibit non-unique solutions in backward time, i.e.,  better robustness and good disturbance rejection
            \item Such non-unique (revert time) solutions would violate uniqueness conditions for Lipschitz differential equations
            \end{itemize}


        \begin{pabox}{\small Statement of Problem}
            \begin{itemize}
                \item\tiny\color{blue}  Consider a rigid body rotating under the action of a mechanical torque about a fixed axis
                \item Its equations of motion resemble those of a double integrator. States differ by $2n\pi$ (where $n = 0, 1, 2, \hdots$) in angular modes which correspond to the same physical configuration of the body.
                \item State space for this system is $S^1 \times \mathbb{R}$ rather than $ \mathbb{R}^2$ \cite{Andronov}
                \item Developing stabilizing controls for the double integrator on $ \mathbb{R}^2$ (translational double integrator) will lead to unwinding since the configuration space is actually $ \mathbb{R}$
                \item  This makes an interesting problem when designing feedback controllers for the rotational double integrator with anti-wind-up compensation
                \item Discontinuous feedback controllers are practically infeasible due to the chattering they introduce because of plant uncertainties
                \item They could also excite high-frequency dynamics when used in controlling lightly damped structures \cite{Baruh et. al.}
            \end{itemize}
        \end{pabox}

    \end{tcolorbox}

\end{frame}
\end{document}

Y aquí está el resultado con los números de fondo no deseados:ingrese la descripción de la imagen aquí

Respuesta1

Elofenderel código es

\tcbset{colframe=blue!75!black,fonttitle=\bfseries,
    colback=green!5!white,
    every box/.style={enhanced,%watermark text=\thetcblayer,
        before=\par\smallskip,after=\par\smallskip},
    every box on layer 2/.style={reset,every box,colback=yellow!10!white,
        drop fuzzy shadow}}

es decir watermark text=\thetcblayer, lo que significa que hay marcas de agua en el fondo, en este caso el número de capa de tcolorbox. Si esto no se desea, se debe eliminar.

\documentclass[slides]{beamer}
%\documentclass[a4wide,8pt]{extarticle}
\mode<presentation>{}

%Define usepackages
\usetheme{default}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{graphicx}                                   % for pdf, bitmapped graphics files
\usepackage{times}                                       % assumes new font selection scheme installed
\usepackage{amsmath}                                    %assumes amsmath package installed
\usepackage{amssymb} 
\usepackage{amsfonts}                                    % assumes amsmath package installed
%\usepackage{color}

\usepackage{commath}

\usepackage{breqn}

\usepackage{tcolorbox}

\usepackage{hyperref}
\hypersetup{linkbordercolor=green}



%Define colors
%\definecolor{blue}{rgb}{0,0,1}  



% %preamble and title page
\setbeamersize{text margin left = 0.2mm}
\setbeamersize{text margin right = 0.2mm}
\setbeamersize{sidebar width left= 0.3mm}
\setbeamersize{sidebar width right= 0.3mm}

\setbeamertemplate{itemize item}[triangle]
\setbeamertemplate{itemize subitem}[triangle]


%\setbeamercovered{transparent}
%\setbeamertemplate{navigation symbols}{}
%\setbeamertemplate{headline}


\tcbuselibrary{skins,breakable}

% Color Box layers
\tcbset{colframe=blue!75!black,fonttitle=\bfseries,
    colback=green!5!white,
    every box/.style={enhanced,%watermark text=\thetcblayer,
        before=\par\smallskip,after=\par\smallskip},
    every box on layer 2/.style={reset,every box,colback=yellow!10!white,
        drop fuzzy shadow}}

% Newt Color Box
\newtcolorbox{pabox}[1]{colback=red!5!white,
    colframe=green!75!black,fonttitle=\bfseries,
    title=#1}

%My green box
\newtcolorbox{mygreenbox}[2][]{%
    enhanced,width=\linewidth-6pt,
    enlarge top by=3pt,enlarge bottom by=3pt,
    enlarge left by=3pt,enlarge right by=3pt,
    title={#2},frame hidden,boxrule=0pt,top=1mm,bottom=1mm,
    colframe=green!30!black, colbacktitle=green!50!yellow,
    coltitle=black, colback=green!25!white,
    borderline={0.5pt}{-0.5pt}{green!75!blue},
    borderline={1pt}{-3pt}{green!50!blue},#1}


\begin{document}

\long\def\/*#1*/{}                              % Define block comment
    % This starts Page 3
    \begin{frame}{\textcolor{cyan}{\small Non-Lipschitzian Dynamics of a Continuous FTS Feedback Controller}}

        \begin{tcolorbox}[title = \small Overview of Problem]
            \begin{itemize}
            \item\tiny\color{blue}  The design of FTS continuous time-invariant feedback controllers involve non-Lipschitzian closed-loop dynamics
            \item Such controllers will exhibit non-unique solutions in backward time, i.e.,  better robustness and good disturbance rejection
            \item Such non-unique (revert time) solutions would violate uniqueness conditions for Lipschitz differential equations
            \end{itemize}


        \begin{pabox}{\small Statement of Problem}
            \begin{itemize}
                \item\tiny\color{blue}  Consider a rigid body rotating under the action of a mechanical torque about a fixed axis
                \item Its equations of motion resemble those of a double integrator. States differ by $2n\pi$ (where $n = 0, 1, 2, \hdots$) in angular modes which correspond to the same physical configuration of the body.
                \item State space for this system is $S^1 \times \mathbb{R}$ rather than $ \mathbb{R}^2$ \cite{Andronov}
                \item Developing stabilizing controls for the double integrator on $ \mathbb{R}^2$ (translational double integrator) will lead to unwinding since the configuration space is actually $ \mathbb{R}$
                \item  This makes an interesting problem when designing feedback controllers for the rotational double integrator with anti-wind-up compensation
                \item Discontinuous feedback controllers are practically infeasible due to the chattering they introduce because of plant uncertainties
                \item They could also excite high-frequency dynamics when used in controlling lightly damped structures \cite{Baruh et. al.}
            \end{itemize}
        \end{pabox}

    \end{tcolorbox}

\end{frame}
\end{document}

Editar

Eliminé algunos códigos/declaraciones innecesarios, por ejemplo, \usepackage{xcolor}porque ya está cargado con tcolorboxy \definecolor{blue}, ya que bluees un color bien conocido.

La \color{cyan}declaración fue cambiada a\textcolor{cyan}{...}

ingrese la descripción de la imagen aquí

información relacionada