línea vertical en ecuaciones matemáticas

línea vertical en ecuaciones matemáticas

¿Cómo puedo producir una línea vertical como esta?ingrese la descripción de la imagen aquí

Respuesta1

Intentar

\documentclass{article}

\begin{document}
\[
\left|  \begin{array}{l}   
     \alpha  \\
     \gamma  \\
     \delta  \\
%\displaystyle% for display style of equations had to be added in each row
   + \frac{1}{T-1}\left[\;\int\limits_{\{h<|u_n|\}} |f(x)|^m \right]^{\frac{1}{m}} \dots
        \end{array}\right.
\]
\end{document}

ingrese la descripción de la imagen aquí

Si me proporciona sus ecuaciones, puedo completar la matriz con ellas.

Apéndice: como mencionó David Carlisle en su comentario a continuación, el uso del alignedentorno de amsmath/ mathtoolspaquetes es una mejor opción ya que con él tiene un entorno matemático de estilo de visualización:

\documentclass{article}
\usepackage{amsmath}

\begin{document}
\[
\left|  \begin{aligned}
    & \alpha  \\
    & \beta   \\
    & \gamma  \\
    & \delta  \\
    & + \frac{1}{T-1}\left[\;\int\limits_{\{h<|u_n|\}} |f(x)|^m \right]^{\frac{1}{m}} \dots
        \end{aligned}\right.
\]
\end{document}

ingrese la descripción de la imagen aquí

Respuesta2

Aquí defino un nuevo entorno y realizo algunas mejoras en la composición tipográfica (los corchetes son demasiado grandes en tu imagen) y la codificación, con la ayuda de mathtools.

También agrego una versión sin la regla, donde los símbolos de desigualdad se mueven un poco hacia la derecha, lo que hace que la regla sea inútil, en mi opinión.

\documentclass{article}
\usepackage{amsmath,mathtools}
\usepackage{newtxtext,newtxmath}

\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}
\newcommand{\intl}{\int\limits}
\newenvironment{ruledaligned}
  {\left|\aligned}
  {\endaligned\right.}

\begin{document}

\begin{equation*}
\begin{ruledaligned}
& (2\lambda\alpha-\gamma)
  \intl_\Omega \abs{DG_h(u_n)}^2 e^{2\lambda\abs{DG_h(u_n)}}
  +\mu\intl_{\{h<\abs{u_n}\}} \abs{u_n}(e^{2\lambda\abs{DG_h(u_n)}}-1)
\\
&\le
  T\intl_{\{h<\abs{u_n}\}} \abs{f(x)}(e^{2\lambda\abs{DG_h(u_n)}}-1)^2
  +\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\le
  T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
   \Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^{2m'}\Biggr)^{\!\frac{1}{m'}}
  +\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\le
  T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
  \norm[\big]{e^{\lambda\abs{DG_h(u_n)}}-1}_{L^{2^*}(\Omega)}^{2\theta}
  \Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^2\Biggr)^{\!1-\theta}
\\
&\qquad+
  \frac{1}{T-1}\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
  \abs[\big]{\{h<\abs{u_n}\}}^{1-\frac{1}{m}}
\end{ruledaligned}
\end{equation*}

\begin{equation*}
\begin{aligned}
& (2\lambda\alpha-\gamma)
  \intl_\Omega \abs{DG_h(u_n)}^2 e^{2\lambda\abs{DG_h(u_n)}}
  +\mu\intl_{\{h<\abs{u_n}\}} \abs{u_n}(e^{2\lambda\abs{DG_h(u_n)}}-1)
\\
&\quad\le
  T\intl_{\{h<\abs{u_n}\}} \abs{f(x)}(e^{2\lambda\abs{DG_h(u_n)}}-1)^2
  +\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\quad\le
  T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
   \Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^{2m'}\Biggr)^{\!\frac{1}{m'}}
  +\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\quad\le
  T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
  \norm[\big]{e^{\lambda\abs{DG_h(u_n)}}-1}_{L^{2^*}(\Omega)}^{2\theta}
  \Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^2\Biggr)^{\!1-\theta}
\\
&\quad\qquad+
  \frac{1}{T-1}\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
  \abs[\big]{\{h<\abs{u_n}\}}^{1-\frac{1}{m}}
\end{aligned}
\end{equation*}

\end{document}

ingrese la descripción de la imagen aquí

información relacionada