Insertar muchas matrices en una tabla.

Insertar muchas matrices en una tabla.

En la cuarta fila de la tabla ¿Cómo puedo alinear los elementos de la primera columna con la segunda columna como se describe en la imagen? ingrese la descripción de la imagen aquí

\documentclass[a4paper,english,12pt,oneside]{book}
%\documentclass[11pt,draft]{article}
%\usepackage{fullpage}
%\usepackage[top=1in, bottom=1in, left=1in, %right=1in]{geometry}
%\usepackage[margin=1in, paperwidth=8.5in, paperheight=11in]{geometry}
%\usepackage[left=2cm, right=2cm, top=2.5cm, bottom=2.5cm]{geometry}
\usepackage[left=20mm]{geometry}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{graphicx}
\usepackage{refstyle}
\usepackage{subcaption}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
\usepackage{epstopdf}
\usepackage{breqn}
\usepackage{mathtools}
%-------------------------------------------------------------------------------
%\usepackage{a4wide}
\usepackage{amsfonts}
\usepackage{amstext}
\usepackage{amsthm}
\usepackage{newlfont}
\usepackage{graphics}
\usepackage{tabularx}
\usepackage{geometry}
\usepackage{lscape}
\usepackage{multirow}
\usepackage{epsfig}
\usepackage{bm,amsmath}
%----------------------------------------------------
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{pifont}
%\usepackage[lite]{mtpro2}
%-----------------------------------------------------
\usepackage{color}
\definecolor{violet}{rgb}{0.7,0.2,0.8}
\definecolor{bluevert}{rgb}{0,0.9,1}
\definecolor{trustcolor}{rgb}{0.71,0.14,0.07}
\definecolor{PinkTriton}{rgb}{.708 ,.055 ,.275}
\definecolor{RedTriton}{rgb}{.491 ,.097 ,.066} % couleur rouge du triton
\definecolor{OrangeTriton}{rgb}{.953 ,.502 ,.04}
%-------------------------------------------------------------------------------
\usepackage[colorlinks=true,linkcolor=blue, citecolor=blue]{hyperref}
%===============================================================================
  \newcommand*{\rowvec}[1]{\left[ #1\right]}


\renewcommand{\vec}[1]{\bm{#1}}
\newcommand{\mat}[1]{\bm{#1}}
\newcommand{\tran}{^{\mathstrut\scriptscriptstyle\top}} 
\setlength\parindent{0pt}
%--------------------------------------------------------
\makeatletter
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
  \hskip -\arraycolsep
  \let\@ifnextchar\new@ifnextchar
  \array{#1}}
\makeatother
%--------------------------------------------------------


\begin{document}

\tabref{dif_irm_tep}).
\begin{table}[ht!]
\centering
  \begin{tabular}{|l|l|}
  \hline
  \multicolumn{2}{|l|}{Step2. Apply numerically stable ASR filter}\\
  \hline
  2a. 2.b & Given $ A = \begin{bmatrix}[ccc|c] \theta^5/20 & \theta^4/8 & \theta^3/6 & \theta^3/3\\ \theta^4/8 & \theta^3/3 & \theta^2/2 & \theta^2/2\\ \theta^3/6 & \theta^2/2 & \theta & 1 \end{bmatrix} $,$ A|_{\theta = 2}\begin{bmatrix}[ccc|c] 1.6000 & 2.0000 & 1.3333 & 2.6667\\ 2.0000 & 2.6667 & 2.0000 & 2.0000\\ 1.3333 & 2.0000 & 2.0000 & 1 \end{bmatrix}$.
  compute $ R = \begin{bmatrix}[ccc|c] −3.8788 & 2.0000 & −3.0476 & −3.3247\\ 0 & −0.2576 & −0.6954 & 0.8886\\ 0 & 0 & 0.0797 & 0.5179 \end{bmatrix} $ where $ Q = \begin{bmatrix} −0.5541 & 0.0773 & −0.4618 \\ 0.5795 & −0.2576 & −0.8113 \\ 0.5976 & −0.7171 & 0.3586 \end{bmatrix}$ \\ 
   \hline
  \multicolumn{2}{|l|}{Step3. computation of the derivation of the ASR filter (p=1)}\\  
  \hline
  3a. 3b. 3c. 3d, 3e. & Given $ A_{\theta}{'} = \begin{bmatrix}[ccc|c] \theta^4/4 & \theta^3/2 & \theta^2/2 & \theta^2\\ \theta^3/2 & \theta^2 & \theta & \theta\\ \theta^2/2 & \theta & 1 & 0 \end{bmatrix} $. So $ A_{\theta}{'}|_{\theta = 2} = \begin{bmatrix}[ccc|c] 4 & 4 & 2 & 4\\ 4 & 4 & 2 & 2\\ 2 & 2 & 1 & 0 \end{bmatrix} $. compute $QA_{\theta}{'}$. Denote $X_1 = \begin{bmatrix} −5.9105 & −5.9105 & −2.9552 \\ 1.0045 & 1.0045 & 0.5022 \\ 0.2390 & 0.2390 & 0.1195 \end{bmatrix} $,$N_1 = \begin{bmatrix} −3.6017 \\ 2.4725 \\ 0.9562 \end{bmatrix}$. Find $X_1R{11}^{-1} = \begin{bmatrix} 2.0469 & −7.8778 & −27.5511 \\ −0.3479 & 1.3388 & 4.6822 \\ −0.0828 & 0.3186 & 1.1143 \end{bmatrix}$. Split it into $L_1 = \begin{bmatrix} 0 & 0 & 0 \\ −0.3479 & 0 & 0 \\ −0.0828 & 0.3186 & 0 \end{bmatrix}$, $D_1 = \begin{bmatrix} 2.0469 & 0 & 0 \\ 0 & 1.3388 & 0 \\ −0.0828 & 0 & 0 \end{bmatrix}$, $U_1 = \begin{bmatrix} 0 & −7.8778 & −27.5511 \\ 0 & 0 & 4.6822 \\ 0 & 0 & 0 \end{bmatrix}$  \\
\hline
 \multicolumn{2}{|l|}{Accuracy of the computations: $\|(A^TA)_{\theta = 2}{'}-(R^TR)_{\theta = 2}{'}\|=2.17.10^{-14}$}\\  
  \hline
  \end{tabular}
\caption{Illustrative calculation for Example1}
\label{tab:dif_irm_tep}
\end{table}\newpage

información relacionada