Tengo este conjunto de ecuaciones y ocupan demasiado espacio.
¿Cuáles son algunas sugerencias para hacerlos más compactos?
\begin{equation}
b_s(t) = \bm{p}_s \exp \left(-t \bm{B}_s\right)\bm{B}_s \bm{e}_s',
\end{equation}
where
\begin{equation}
\bm{B}_s = (\bm{B}_1 \oplus \bm{R}_2) - \lambda_R \bm{e}'( \bm{p}_1
\otimes \bm{r}_2),
\end{equation}
\begin{displaymath}
\bm{p}_s = (1 - \rho_s)(\bm{p}_1 \otimes \bm{r}_2)\bm{K},
\end{displaymath}
\begin{displaymath}
\rho_s = \lambda_R ( \bm{p}_1 \otimes \bm{r}_2) (\bm{B}_1 \oplus
\bm{R}_2)^{-1} \bm{e}_s',
\end{displaymath}
\begin{displaymath}
\bm{K}_s = (\bm{I} - \bm{U}_s)^{-1},\ \ \ \bm{U}_s = \bm{A}_s^{-1},
\end{displaymath}
\begin{displaymath}
\bm{A}_s = \bm{I} + \frac{1}{\lambda_R}( \bm{B}_1 \oplus \bm{R}_2) -
\bm{e}' ( \bm{p}_1 \otimes \bm{r}_2 ),
\end{displaymath}
\begin{displaymath}
\bm{R}_2 = \bm{B}_2 - \lambda_A\bm{Q}_2,
\end{displaymath}
\begin{displaymath}
\bm{r}_2 = (1 - \rho_2)\lambda_A \bm{p}_2\bm{K}_2,\
\end{displaymath}
\begin{displaymath}
\rho_2 = \lambda_A \bm{p}_2 \bm{V}_2 \bm{e}_2,
\end{displaymath}
\begin{displaymath}
\bm{K}_2 = (\bm{I} - \bm{U}_2)^{-1},\ \ \ \bm{U}_2 = \bm{A}_2^{-1},
\end{displaymath}
\begin{displaymath}
\bm{A}_2 = \bm{I} + \frac{1}{\lambda_A}\bm{B}_2 - \bm{e}_2' \bm{p}_2.
\end{displaymath}
ACTUALIZACIÓN:
De acuerdo. Entonces utilicé el comando "reunir" y se ve mejor. Pero aún quedan espacios. Vea abajo...
Respuesta1
El entorno de ecuaciones (y displaymath) deja algo de espacio arriba y abajo de forma predeterminada. Como has usado muchos de ellos consecutivamente, se suman. Debe utilizar el entorno de alineación para evitar espacios excesivos.
La próxima vez, publique un código completamente compilable para que ayude a otros.
\documentclass[11pt]{article}
%
\usepackage{mathtools}
\usepackage{esvect}
\usepackage{amssymb}
\usepackage{bm}
\begin{document}
\begin{align}
b_s(t) &= \bm{p}_s \exp \left(-t \bm{B}_s\right)\bm{B}_s \bm{e}_s', \\
\shortintertext{where}
\bm{B}_s &= (\bm{B}_1 \oplus \bm{R}_2) - \lambda_R \bm{e}'( \bm{p}_1
\otimes \bm{r}_2), \\
\bm{p}_s &= (1 - \rho_s)(\bm{p}_1 \otimes \bm{r}_2)\bm{K}, \notag \\
\rho_s &= \lambda_R ( \bm{p}_1 \otimes \bm{r}_2) (\bm{B}_1 \oplus
\bm{R}_2)^{-1} \bm{e}_s', \notag \\
\bm{K}_s &= (\bm{I} - \bm{U}_s)^{-1},\ \ \ \bm{U}_s = \bm{A}_s^{-1},
\notag \\
\bm{A}_s &= \bm{I} + \frac{1}{\lambda_R}( \bm{B}_1 \oplus \bm{R}_2) -
\bm{e}' ( \bm{p}_1 \otimes \bm{r}_2 ), \notag \\
\bm{R}_2 &= \bm{B}_2 - \lambda_A\bm{Q}_2, \notag \\
\bm{r}_2 &= (1 - \rho_2)\lambda_A \bm{p}_2\bm{K}_2,\ \notag \\
\rho_2 &= \lambda_A \bm{p}_2 \bm{V}_2 \bm{e}_2, \notag \\
\bm{K}_2 &= (\bm{I} - \bm{U}_2)^{-1},\ \ \ \bm{U}_2 = \bm{A}_2^{-1},
\notag \\
\bm{A}_2 &= \bm{I} + \frac{1}{\lambda_A}\bm{B}_2 - \bm{e}_2'
\bm{p}_2.\notag
\end{align}
\end{document}