Las referencias no aparecen en el primer fotograma.

Las referencias no aparecen en el primer fotograma.

Estoy preparando mi presentación usando Beamer. Mientras se ejecuta el archivo, en la salida, especialmente en el marco de referencia (hay 93 referencias), en el primer marco aparece la referencia 1 y 2,3,4 desaparece, mientras que las referencias 5 a 93 aparecen continuamente en todos los marcos. Por favor dame la solución para esto.

Estoy usando el código como se muestra a continuación.

\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}

\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

\end{enumerate}
\end{frame}   

Ejemplo completo:

\documentclass[10pt]{beamer}
\usepackage{hyperref,times,graphicx,setspace}
\mode<presentation>
   {
    \usetheme{Warsaw}
%  \setbeamercovered{transparent}
    }
\usepackage{epsfig}
\usepackage[english]{babel}
%\usepackage[latin1]{inputenc}
%\usepackage{times}
%\usepackage[T1]{fontenc}
\usepackage{color}
\usepackage{pst-node}
\usepackage{epsfig,amsmath,amsthm,latexsym,amssymb,amsgen,graphicx}
\usepackage{amsthm}
\usepackage{beamerthemesplit}

\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\newtheorem{eg}[thm]{Example}
\newtheorem{ex}[thm]{Exercise}
\newtheorem{prob}{Problem}
\newtheorem{ob}[thm]{Observation}
\newtheorem{rk}[thm]{Remark}
\newtheorem{ill}{Illustration}
\newtheorem{con}{Conjecture}
\newtheorem{prop}{Proposition}
\theoremstyle{remark}
\newtheorem*{pf}{Proof}
\newtheorem*{pfc}{Proof ctd...}
\numberwithin{equation}{section}
%\newenvironment{daln}{$\arraycolsep=.2ex\begin{array}[t]{rl}}%
%{\end{array}$}
\setlength{\unitlength}{0.1mm}
\renewcommand{\baselinestretch}{1.2}

\title[XXXXXX]
{\it{\bf{XXXXXXXX}}}



\author[K.SRINIVASA RAO] % (optional, use only with lots of authors)
{ K.SRINIVASA RAO}
\institute[]
{\\RESEARCH GUIDE \vskip .5cm
{\large XXXX}


\subject{Ph.D Viva-Voce}



\beamerdefaultoverlayspecification{<+->}

\date{--- --,--}



\begin{document}


\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}

\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

\bibitem{7Beh}
M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.

\bibitem{8Beh}
M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.

\bibitem{9Beh}
M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.

\bibitem{10Benk}
Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.

\bibitem{11Berm}
J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.


\end{frame}
\end{document} 

Respuesta1

El problema central es \beamerdefaultoverlayspecification{<+->}simplemente eliminarlo.

Algunos problemas/comentarios menores:

  • No necesitas hyperref, graphicx, colorcon proyector
  • no cargue el mismo paquete varias veces, por ejemplo times, etc.graphicxamsthm
  • desaparecido }al final de tu instituto
  • desaparecido\end{enumerate}

\documentclass[10pt]{beamer}

\usetheme{Warsaw}
\usepackage{beamerthemesplit}
\setbeamercovered{transparent}
\usepackage[english]{babel}


%\beamerdefaultoverlayspecification{<+->}

\setbeamertemplate{frametitle continuation}{}

\begin{document}

\begin{frame}[allowframebreaks]
  \frametitle{References:}
  \begin{enumerate}
        \bibitem{1Aki}
        J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

        \bibitem{2Alsp}
        B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

        \bibitem{3Alsp}
        B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

        \bibitem{4Anad}
        B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

        \bibitem{5Basa}
        M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

        \bibitem{6Beh}
        M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

        \bibitem{7Beh}
        M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.

        \bibitem{8Beh}
        M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.

        \bibitem{9Beh}
        M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.

        \bibitem{10Benk}
        Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.

        \bibitem{11Berm}
        J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.
    \end{enumerate}
\end{frame}

\end{document} 

ingrese la descripción de la imagen aquí

información relacionada