Considere el siguiente MWE:
\documentclass[12pt,a4paper]{article}
\usepackage[fleqn]{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{enumitem}
\newcommand{\C}{\mathbb{C}}
\begin{document}
\begin{enumerate}[label=(\roman*)]
\itemsep -0.2em
\item \begin{equation*}
e^z = \sum_{n=0} z^n / n!
\end{equation*}
\item \begin{equation*}
\sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)!
\end{equation*}
\item \begin{equation*}
\cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \\
\text{which converges } \forall \ z \in \C
\end{equation*}
\item \begin{equation*}
\log_e (1 - z) = - \sum_{n=1} z^n/n
\end{equation*}
\item \begin{equation*}
(1 - z)^{-1} = \sum_{n=0} z^n \\
\text{which converges for } |z| < 1
\end{equation*}
\end{enumerate}
\end{document}
¿Cómo puedo conseguir los números de enumeración (i, ii, etc.) en la misma línea que las ecuaciones?
Respuesta1
No veo nada en tus preguntas que no se pueda hacer usando equation
.
\documentclass[12pt,a4paper]{article}
\usepackage[fleqn]{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\newcommand{\C}{\mathbb{C}}
\newcounter{dummy}
\makeatletter
\newcommand{\leqnomode}{\tagsleft@true}
\makeatother
\begin{document}
\begin{equation}
normalequation
\end{equation}
\bgroup
\leqnomode
\setcounter{dummy}{\theequation}
\renewcommand{\theequation}{\roman{equation}}%
\begin{equation}
e^z = \sum_{n=0} z^n / n!
\end{equation}
\begin{equation}
\sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)!
\end{equation}
\begin{equation}
\cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \\
\text{which converges } \forall \ z \in \C
\end{equation}
\begin{equation}
\log_e (1 - z) = - \sum_{n=1} z^n/n
\end{equation}
\begin{equation}
(1 - z)^{-1} = \sum_{n=0} z^n \\
\text{which converges for } |z| < 1
\end{equation}
\setcounter{equation}{\thedummy}
\egroup
\bgroup
\leqnomode
\setcounter{dummy}{\theequation}
\renewcommand{\theequation}{\roman{equation}}%
\begin{equation}
e^z = \sum_{n=0} z^n / n!
\end{equation}
\begin{equation}
\sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)!
\end{equation}
\begin{equation}
\cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \\
\text{which converges } \forall \ z \in \C
\end{equation}
\begin{equation}
\log_e (1 - z) = - \sum_{n=1} z^n/n
\end{equation}
\begin{equation}
(1 - z)^{-1} = \sum_{n=0} z^n \\
\text{which converges for } |z| < 1
\end{equation}
\setcounter{equation}{\thedummy}
\egroup
\begin{equation}
normal equation
\end{equation}
\end{document}
\leqnomode
es tomado prestado deColocación de etiquetas con amsmath
Respuesta2
Una solución con el entorno enumerate:
\documentclass[12pt, a4paper]{article}
\usepackage[fleqn]{mathtools}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{enumitem}
\newcommand{\C}{\mathbb{C}}
\begin{document}
\begin{enumerate}[label=(\roman*), leftmargin=*, itemsep=0.4ex, before={\everymath{\displaystyle}}]%
\item $ e^z = \sum_{n=0} z^n / n! $ \label{eq-1}
\item $ \sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)! $\label{eq-2}
\item $ \begin{aligned}[t]
& \cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n!\\
& \text{which converges $ \forall \ z \in \C $} \label{eq-3}
\end{aligned}
$
\item $ \log_e (1 - z) = - \sum_{n=1} z^n/n $ \label{eq-4}
\item $\begin{aligned}[t] & (1 - z)^{-1} = \sum_{n=0} z^n ,\\
&\text{which converges for $ |z| < 1 $} \end{aligned}$ \label{eq-5}
\end{enumerate}
It is easy to prove eq. \ref{eq-3}.
\end{document}
Respuesta3
Una solución basada en laTeXnicianEl comentario de.
\documentclass[12pt,a4paper]{article}
\usepackage[leqno, fleqn]{amsmath}
\usepackage{amssymb}
\usepackage{ mathtools }
\newcommand{\C}{\mathbb{C}}
\makeatletter
\newcommand{\leqnomode}{\tagsleft@true}
\newcommand{\reqnomode}{\tagsleft@false}
\makeatother
\newtagform{Alph}[\renewcommand{\theequation}{\Alph{equation}}]()
\newtagform{roman}[\renewcommand{\theequation}{\roman{equation}}]()
\newtagform{scroman}[\renewcommand{\theequation}{\scshape\roman{equation}}]
[]
\begin{document}
\usetagform{roman}
\begin{align}
&e^z = \sum_{n=0} z^n / n! \\
&\sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)! \\
&\cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \text{ which converges }
\forall \ z \in \C \\
&\log_e (1 - z) = - \sum_{n=1} z^n/n \\
&(1 - z)^{-1} = \sum_{n=0} z^n \text{ which converges for } |z| < 1
\end{align}
%\setcounter{equation}{0}
\end{document}
Referencias:
Cambiar entre las opciones leqno y reqno (de amsmath) en el mismo documento
Cómo cambiar números a números romanos en un entorno de alineación