¿Cómo ingresar puntuación en el encabezado LaTeX (fancyheadings)?

¿Cómo ingresar puntuación en el encabezado LaTeX (fancyheadings)?

Estoy siguiendo esta guía aquí.http://www.fi.infn.it/pub/tex/doc/orig/fancyheadings.pdf

para opciones de formato de encabezado de látex 'fancyheadings'. En la página 5 se ofrece un ejemplo de cómo hacer que los encabezados de cada página sean el capítulo y el título del capítulo.

Así, por ejemplo, el código que dan:

\lhead[\fancyplain{}{\slshape \rightmark}]{\fancyplain{}%
{\slshape \leftmark}}

produciría:

"Chapter 1 Introduction"en el encabezado de la página de salida, donde Capítulo 1 es el Capítulo e Introducción es el Título del capítulo derivado de\chapter{Introduction} comienzo de la página de mi capítulo.

Mi pregunta es: ¿cómo diablos puedo hacer que los encabezados produzcan algo como:

"Chapter 1: Introduction"o"Chapter 1 | Introduction" algo con alguna puntuación entre el capítulo y el título del capítulo.

Avíseme si debo publicar más código. Espero que alguien sepa la respuesta rápidamente, pero avíseme si necesita más información.

Respuesta1

La documentación publicada en 1996 debe mirarse con recelo. De hecho, el fancyheadingspaquete ha estado obsoleto durante unos 20 años.

Hay que mirar la fancyhdrdocumentación y redefinir \chaptermark.

\documentclass{book}
\usepackage{blindtext}

\usepackage{fancyhdr}

\pagestyle{fancy}
\fancyhf{} % clear all fields
\fancyhead[LE,RO]{\slshape\rightmark}
\fancyhead[RE,LO]{\slshape\leftmark}
\fancyfoot[C]{\thepage}
\renewcommand{\chaptermark}[1]{%
  \markboth{\MakeUppercase{%
    \ifnum\value{chapter}>0
      Chapter \thechapter\ $|$ % with a space!
    \fi
    #1%
  }}{}%
}

\begin{document}

\blinddocument

\end{document}

Respuesta2

ingrese la descripción de la imagen aquí

Puedes personalizarlo usando lo siguiente:

  • Para el nombre del capítulo, utilice \renewcommand{\chaptermark}[1]{ \markboth{#1}{} }dónde #1está el nombre del capítulo. Por ejemplo, puede reemplazar #1con \textit{#1}y el nombre del capítulo aparecerá en cursiva en los encabezados. El mismo concepto se aplica al nombre de la sección.\renewcommand{\sectionmark}[1]{ \markright{#1} }
  • La palabra Chapterse puede cambiar usando \renewcommand{\chaptername}{Chapter}. Puedes utilizar una forma abreviada comoCh
  • Los encabezados se personalizan usando \fancypagestyley el estilo de página se define usando \pagestyle{mainmatter}. Para eliminar estilos de página de ubicaciones no deseadas (especialmente al principio), utilice \thispagestyle{empty}

Aquí hay un código completo que le proporcionará Chapter 1: Introductionencabezados:

\documentclass[twoside]{thesis}

    \usepackage{fancyhdr}

        \pagestyle{fancy} % allows for more advanced header and footer formats

                % Customizations
                \renewcommand{\chaptermark}[1]{ \markboth{#1}{} }  % customize chapter name here
                \renewcommand{\chaptername}{Chapter}
                \renewcommand{\sectionmark}[1]{ \markright{#1} } % customize section name here

                % Define headers
                \fancypagestyle{mainmatter}{
                                                % Header and footer lines
                                                \renewcommand{\headrulewidth}{0.5 pt}
                                                \renewcommand{\footrulewidth}{0 pt}

                                                % Headers
                                                \fancyhead{} % clear header field
                                                \fancyhead[RO]{ \textbf{ \chaptername\ \thechapter:\ \leftmark } \hspace{4mm} \thepage } % customize chapter name header here
                                                \fancyhead[LE]{ \thepage \hspace{4mm} \thesection \textbf{ \rightmark }  } % customize section name header here

                                                % Foot
                                                \fancyfoot{} % clear foot fields
                                                \fancyfoot[LE, RO]{By: Al-Motasem I. Aldaoudeyeh}
                                        }


\begin{document}

\thispagestyle{empty}

\title{Development of a Generalized PV Model in MATLAB/Simulink Using Datasheet Values}



\author{Al-Motasem I. Aldaoudeyeh
    \thanks{Al-Motasem I. Aldaoudeyeh is with the Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, 58102 USA e-mail: [email protected]}
}


\maketitle


\thispagestyle{empty}
\begin{abstract}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

\end{abstract}
\thispagestyle{empty}


\pagestyle{mainmatter}
\chapter{Chapter Name}


\section{Introduction}
\label{section:introduction}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.


\section{Numerical Results and Discussion}
\label{sec:results}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit.


\section{Conclusions}
\label{sec:conclusions}


    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.


\end{document}

información relacionada